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About this course

Overview

Nature of this course

Covers standard statistical machine learning methods (supervised
learning, unsupervised learning, etc.)

Particular focuses are on the conceptual understanding and derivation
of these methods

Learning objectives:

Hone skills on grasping abstract concepts and thinking critically to
solve problems with machine learning techniques

Solidify your knowledge with hand-on programming tasks

Prepare you for studying advanced machine learning techniques
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About this course

Teaching logistics

We will divide the allotted time on WF 10:00-11:50 AM as follows:

Lectures: WF 10:00-11:10 AM

Discussions: WF 11:10-11:50 AM (by TAs)

DEN@Viterbi/D2L:

Use “Virtual Meetings” tab at the CSCI-567 page at
https://courses.uscden.net to access the meeting link

feel free to unmute and ask questions (avoid chat box)

be patient if connection is lost

let me know if you have any comments

5 / 42



About this course

Teaching logistics

We will divide the allotted time on WF 10:00-11:50 AM as follows:

Lectures: WF 10:00-11:10 AM

Discussions: WF 11:10-11:50 AM (by TAs)

DEN@Viterbi/D2L:

Use “Virtual Meetings” tab at the CSCI-567 page at
https://courses.uscden.net to access the meeting link

feel free to unmute and ask questions (avoid chat box)

be patient if connection is lost

let me know if you have any comments

5 / 42



About this course

Teaching logistics

We will divide the allotted time on WF 10:00-11:50 AM as follows:

Lectures: WF 10:00-11:10 AM

Discussions: WF 11:10-11:50 AM (by TAs)

DEN@Viterbi/D2L:

Use “Virtual Meetings” tab at the CSCI-567 page at
https://courses.uscden.net to access the meeting link

feel free to unmute and ask questions (avoid chat box)

be patient if connection is lost

let me know if you have any comments

5 / 42



About this course

Teaching logistics

We will divide the allotted time on WF 10:00-11:50 AM as follows:

Lectures: WF 10:00-11:10 AM

Discussions: WF 11:10-11:50 AM (by TAs)

DEN@Viterbi/D2L:

Use “Virtual Meetings” tab at the CSCI-567 page at
https://courses.uscden.net to access the meeting link

feel free to unmute and ask questions (avoid chat box)

be patient if connection is lost

let me know if you have any comments

5 / 42



About this course

Teaching logistics

We will divide the allotted time on WF 10:00-11:50 AM as follows:

Lectures: WF 10:00-11:10 AM

Discussions: WF 11:10-11:50 AM (by TAs)

DEN@Viterbi/D2L:

Use “Virtual Meetings” tab at the CSCI-567 page at
https://courses.uscden.net to access the meeting link

feel free to unmute and ask questions (avoid chat box)

be patient if connection is lost

let me know if you have any comments

5 / 42



About this course

Online platforms

Course website: https://courses.uscden.net

general information (schedule, slides, etc.)

homework release and submissions

recorded lectures/discussions

submit written assignments

grade posting

Piazza: https://piazza.com/class/kjkinvvwzi12mp

Also on DEN@Viterbi/D2L platform

main discussion forum

everyone has to enroll

Kaggle (for course project)
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About this course

Teaching staff

2 TAs

(lecture/discussion, quiz, etc.)

Liyu Chen liyuc@usc.edu

Karishma Sharma krsharma@usc.edu

2 CPs

(homework, project, etc.)

Dhiti Thakkar dhitisam@usc.edu

Prateek Jain jainp@usc.edu

Office hours are on Piazza→Resources→Staff
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About this course

Prerequisites

Undergraduate level training in probability and statistics, linear
algebra, (multivariate) calculus

Programming: Python and necessary packages (e.g. numpy)

not an intro-level CS course, no training of basic programming skills.
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About this course

Slides and readings

Lectures
Lecture slides/handouts will be posted before the class (and possibly
updated after)1.

Readings

No required textbooks

Main recommended readings:

Machine Learning: A Probabilistic Perspective by Kevin Murphy

Elements of Statistical Learning by Hastie, Tibshirani and Friedman

More: see course website

Special thanks to Prof. Haipeng Luo and Prof. Yan Liu for the course material!
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About this course

Grade

Structure:

40%: 5 written assignments

30%: 2 quizzes

30%: 1 Kaggle-based course project

Initial cut-offs (for A and B):

B- = [70,75), B = [75, 80), B+ = [80, 85)

A- = [85, 90), A = [90, 100]

Important: final cut-offs will NOT be released. If adjusted they could only
be LOWER.
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About this course

Homework

5 written assignments (problem sets):

submit one pdf to D2L (scanned copy or typeset with LaTeX etc.)

graded based on correctness

collaboration is permitted at high-level but must be stated (each
member has to make a separate submission)

Copying solutions from any sources → zero grade.

3 late days in total, at most one can be used for each assignment

A two-day window for re-grading (regarding factual errors)
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About this course

Course Project

Done on Kaggle

Groups of 2-3 students (we randomly assign you team-mates)

Same project assigned to all groups

Deliverables: A progress update, and a final 4 page write-up

Grading based on number of submissions, ranking and the
deliverables.

More details to come as the semester progresses.

12 / 42



About this course

Quizzes

First one on 03/03, second one on 05/10 (final).

Quiz 1: in class, 10:00-11:50 AM,

Quiz 2 (final), scheduled for 8:00-10:00 AM; see
https://classes.usc.edu/term-20211/finals/.

open-book, no collaboration or consultation from others allowed

Details will be discussed closer to the quiz date, the dates are
tentative.
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About this course

Academic integrity

Plagiarism and other unacceptable violations

neither ethical nor in your self-interest

zero-tolerance

check https://viterbischool.usc.edu/academic-integrity/

for a complete list
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Overview of machine learning

Outline

1 About this course

2 Overview of machine learning

3 Mathematical Foundations
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Overview of machine learning

What is machine learning?

One possible definition2

a set of methods that can automatically detect patterns in data, and then
use the uncovered patterns to predict future data, or to perform other
kinds of decision making under uncertainty

cf. Murphy’s book
16 / 42



Overview of machine learning

Example: detect patterns

How the temperature has been changing?

Patterns

Seems going up

Repeated periods of going up and down.
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Overview of machine learning

How do we describe the pattern?

Build a model: fit the data with a polynomial function

The model is not accurate for individual years

But collectively, the model captures the major trend
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Overview of machine learning

Predicting future

What is temperature of 2010?

Again, the model is not accurate for that specific year

But then, it is close to the actual one

19 / 42



Overview of machine learning

What we have learned from this example?

Key ingredients in machine learning

Data
collected from past observation (we often call them training data)

Modeling
devised to capture the patterns in the data

The model does not have to be true — “All models are wrong, but
some are useful” by George Box.

Prediction
apply the model to forecast what is going to happen in future
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Overview of machine learning

A rich history of applying statistical learning methods

Recognizing flowers (by R. Fisher, 1936)
Types of Iris: setosa, versicolor, and virginica

21 / 42



Overview of machine learning

Huge success 30 years ago

Recognizing handwritten zipcodes (AT&T Labs, late 1990s)

true class = 7 true class = 2 true class = 1

true class = 0 true class = 4 true class = 1

true class = 4 true class = 9 true class = 5
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Overview of machine learning

More modern ones, in your social life

Recognizing your friends on Facebook

23 / 42



Overview of machine learning

It might be possible to know about you than yourself

Recommending what you might like

24 / 42



Overview of machine learning

Why is machine learning so hot?

Tons of consumer applications:

speech recognition, information retrieval and search, email and
document classification, stock price prediction, object recognition,
biometrics, etc
Highly desirable expertise from industry: Google, Facebook, Microsoft,
Uber, Twitter, IBM, Amazon, · · ·

Enable scientific breakthrough
Climate science: understand global warming cause and effect
Biology and genetics: identify disease-causing genes and gene networks
Social science: social network analysis; social media analysis
Business and finance: marketing, operation research
Emerging ones: healthcare, energy, · · ·
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Overview of machine learning

What is in machine learning?

Different flavors of learning problems

Supervised learning
Aim to predict (as in previous examples)

Unsupervised learning
Aim to discover hidden and latent patterns and explore data

Decision making (e.g. reinforcement learning)
Aim to act optimally under uncertainty

Many other paradigms

The focus and goal of this course

Supervised learning (before Quiz 1)

Unsupervised learning (after Quiz 1)
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Mathematical Foundations

Outline

1 About this course

2 Overview of machine learning

3 Mathematical Foundations
Review of Probability
Review of Statistics
Review of Information Theory
Review of Optimization
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Mathematical Foundations

How to grasp machine learning well

Three pillars to machine learning3

Probability, Statistics and Information Theory

Linear Algebra and Matrix Analysis

Optimization

Resources

Suggested Reading:

All of Statistics Page 21-89
Murphy’s textbook
The Matrix Cookbook (a great resource!)
www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

There are other great resources/visualizations available online

If you find a neat explanation for something be sure to share with all
of us in the “useful links” thread on piazza

Quote from Prof. Michael I. Jordan
28 / 42
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Mathematical Foundations Review of Probability

Probability: basic definitions

Sample Space: a set of all possible outcomes or realizations of some
random trial.

Example: Toss a coin twice; the sample space is Ω = {HH,HT, TH, TT}.
Event: A subset of sample space

Example: the event that at least one toss is a head is
A = {HH,HT, TH}.
Probability: We assign a real number P (A) to each event A, called the
probability of A.

Probability Axioms: The probability P must satisfy three axioms:

1 P (A) ≥ 0 for every A;

2 P (Ω) = 1;

3 If A1, A2, . . . are disjoint, then P (∪∞i=1Ai) =
∑∞

i=1 P (Ai)
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Mathematical Foundations Review of Probability

Random Variables

Definition: A random variable is a measurable function that maps from a
probability space to a measurable space, i.e. X : Ω→ R, that assigns a
real number X(ω) to each outcome ω ∈ Ω.

Two Types: Discrete (e.g. Bernoulli in Coin toss) and Continuous (e.g.
Gaussian)

Data and Statistics The data are specific realizations of random
variables; A statistic is just any function of the data or random variables,
e.g. mean, variance etc.
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Mathematical Foundations Review of Probability

Distribution Function

Definition: Suppose X is a random variable and x is a specific value that
it can take, then

For discrete r.v. X, the probability mass function is defined as

fX(x) = P (X = x)

For continuous r.v. X, fX(x) ≥ 0 is the probability density function if for
every a ≤ b

P (a ≤ X ≤ b) =

∫ b

a
f(x)dx

where
∫∞
−∞ f(x)dx = 1. Note: for continuous distributions P (X = x) = 0!

Cumulative distribution function (CDF) of X : FX(x) = P (X ≤ x). If
F (x) is differentiable everywhere, f(x) = F ′(x).
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Mathematical Foundations Review of Probability

Expectation

Expected Values

Of a function g(·) of a discrete random variable X,

E[g(X)] =
∑
x∈X

g(x)f(x);

Of a function g(·) of a continuous random variable X,

E[g(X)] =

∫ ∞
−∞

g(x)f(x).

Mean and Variance µ = E[X] is the mean; var[X] = E[(X − µ)2] is the
variance. We also have var[X] = E[X2]− µ2.
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Mathematical Foundations Review of Probability

Multivariate Distributions

Definition:
FX,Y (x, y) := P (X ≤ x, Y ≤ y),

and

fX,Y (x, y) :=
∂2FX,Y (x, y)

∂x∂y
,

Marginal Distribution of X (Discrete case):

fX(x) = P (X = x) =
∑
y

P (X = x, Y = y) =
∑
y

fX,Y (x, y)

or fX(x) =
∫
y fX,Y (x, y)dy for continuous variable.

Conditional probability of X given Y = y is

fX|Y (x|y) = P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
=
fX,Y (x, y)

fY (y)
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Mathematical Foundations Review of Probability

Bayes Rule

Law of total Probability: X takes values x1, . . . , xn and y is a value of
Y , we have

fY (y) =
∑
j

fY |X(y|xj)fX(xj)

Bayes Rule:
(Simple Form)

P (X|Y ) =
P (Y |X)P (X)

P (Y )

(Discrete Random Variables)

fX|Y (xi|y) =
fY |X(y|xi)fX(xi)∑
j fY |X(y|xj)fX(xj)

(Continuous Random Variables)

fX|Y (x|y) =
fY |X(y|x)fX(x)∫

x fY |X(y|x)fX(x)dx
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Mathematical Foundations Review of Probability

Independence

Independent Variables X and Y are independent if and only if:

P (X = x, Y = y) = P (X = x)P (Y = y)

or fX,Y (x, y) = fX(x)fY (y) for all values x and y.

IID variables: Independent and identically distributed (IID) random
variables are drawn from the same distribution and are all mutually
independent.

If X1, . . . , Xn are independent, we have

E[

n∏
i=1

Xi] =

n∏
i=1

E[Xi], var[

n∑
i=1

aiXi] =

n∑
i=1

a2i var[Xi]

Linearity of Expectation: Even if X1, . . . , Xn are not independent,

E[
n∑
i=1

Xi] =
n∑
i=1

E[Xi].
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Mathematical Foundations Review of Probability

Correlation

Covariance

cov(X,Y ) = E[(X − µx)(Y − µy)],

Correlation coefficients

corr(X,Y ) = Cov(X,Y )/σxσy

Independence ⇒ Uncorrelated (corr(X,Y ) = 0).

However, the reverse is generally not true.
The important special case: multi-variate Gaussian distribution.
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Statistics

Suppose X1, . . . , Xn are random variables:

Sample Mean:

X̄ =
1

N

N∑
i=1

Xi

Sample Variance:

S2
N−1 =

1

N − 1

N∑
i=1

(Xi − X̄)2.

If Xi are iid:

E[X̄] = E[Xi] = µ,

V ar(X̄) = σ2/N,

E[S2
N−1] = σ2
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Point Estimation

Definition The point estimator θ̂N is a function of samples X1, . . . , XN

that approximates a parameter θ of the distribution of Xi.

Sample Bias: The bias of an estimator is

bias(θ̂N ) = Eθ[θ̂N ]− θ

An estimator is unbiased estimator if Eθ[θ̂N ] = θ

Standard error The standard deviation (i.e. the square-root of variance)
of θ̂N is called the standard error

se(θ̂N ) =

√
V ar(θ̂N ).
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Mathematical Foundations Review of Information Theory

Review of Information Theory

Suppose X can have one of the m values: x1, . . . , xm., and the probability
P (X = xi) = pi.

Entropy is the average amount of surprise in a r.v.’s outcome.

H(X) = −
m∑
i=1

pi log pi

“High entropy” means X is from a uniform (boring) distribution;

“Low entropy” means X is from varied (peaks and valleys)
distribution.

39 / 42



Mathematical Foundations Review of Information Theory

Review of Information Theory

Suppose X can have one of the m values: x1, . . . , xm., and the probability
P (X = xi) = pi.

Entropy is the average amount of surprise in a r.v.’s outcome.

H(X) = −
m∑
i=1

pi log pi

“High entropy” means X is from a uniform (boring) distribution;

“Low entropy” means X is from varied (peaks and valleys)
distribution.

39 / 42



Mathematical Foundations Review of Information Theory

Review of Information Theory

Suppose X can have one of the m values: x1, . . . , xm., and the probability
P (X = xi) = pi.

Entropy is the average amount of surprise in a r.v.’s outcome.

H(X) = −
m∑
i=1

pi log pi

“High entropy” means X is from a uniform (boring) distribution;

“Low entropy” means X is from varied (peaks and valleys)
distribution.

39 / 42



Mathematical Foundations Review of Information Theory

Information Theory

Conditional Entropy is the remaining entropy of a random variable Y given that
the value of another random variable X is known.

H(Y |X) =

m∑
i=1

p(X = xi)H(Y |X = xi) = −
m∑
i=i

n∑
j=1

p(xi, yj) log p(yj |xi)

Mutual Information: if Y must be transmitted, how many bits on average
would be saved if both ends of the line knew X?

I(Y ;X) = H(Y )−H(Y |X).

Notice that I(Y ;X) = I(X;Y ) = H(X) +H(Y )−H(X,Y )

Kullback-Leibler divergence is a measure of distance between two distributions:
a “true” distribution p(X), and an arbitrary distribution q(X).

KL(p||q) =
∑
x

p(x) log
p(x)

q(x)

We can write I(X;Y ) = KL(p(x, y)||p(x)p(y)).
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Mathematical Foundations Review of Optimization

Optimization

Definition: Optimization refers to choosing the best element from some
set of available alternatives. A general form is as follows:

minimize f0(x) (1)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

Difficulties:

1 Local or global optimum?

2 Difficulty to find a feasible point,

3 Stopping criteria,

4 Poor convergence rate,

5 Numerical issues
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Convex Optimization

Convex Functions: if for any two points x1, x2 ∈ X and any t ∈ [0, 1],

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

A function f is said to be concave if −f is convex.

Convex Set a set S is convex if and only if for any x1, x2 ∈ S,
tx1 + (1− t)x2 ∈ S for any t ∈ [0, 1],

Convex Optimization is minimization (maximization) of a convex
(concave) function over a convex set, e.g., Linear Programming (LP),
Quadratic Programming (QP), and Semi-Definite Programming (SDP).

Popular convex optimization algorithms:

Gradient descent

Conjugate gradient

Newton’s method

Quasi-Newton method

Subgradient method
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