
CSCI567 Machine Learning (Spring 2021)

Sirisha Rambhatla

University of Southern California

Feb 19, 2021

1 / 32



Outline

1 Logistics

2 Review of last lecture

3 Kernel methods

2 / 32



Logistics

Outline

1 Logistics

2 Review of last lecture

3 Kernel methods

3 / 32



Logistics

Logistics

HW 2 Is due today, and HW 3 will be assigned!

4 / 32



Review of last lecture

Outline

1 Logistics

2 Review of last lecture

3 Kernel methods

5 / 32



Review of last lecture

Convolutional Neural Nets

Typical architecture for CNNs:

Input → [[Conv → ReLU]*N → Pool?]*M → [FC → ReLU]*Q → FC

(Goodfellow 2016)

2D Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +
ey + fz
aw + bx +
ey + fz

bw + cx +
fy + gz
bw + cx +
fy + gz

cw + dx +
gy + hz
cw + dx +
gy + hz

ew + fx +
iy + jz
ew + fx +
iy + jz

fw + gx +
jy + kz
fw + gx +
jy + kz

gw + hx +
ky + lz
gw + hx +
ky + lz

Input
Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.

334

(filter/receptive field)

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201773

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING

6 / 32



Kernel methods

Outline

1 Logistics

2 Review of last lecture

3 Kernel methods
Motivation
Kernel Trick
Dual formulation of linear regression

7 / 32



Kernel methods Motivation

Motivation

Recall the question: how to choose nonlinear basis φ : RD → RM?

wTφ(x)

neural network is one approach: learn φ from data

kernel method is another one: sidestep the issue of choosing φ by
using kernel functions

8 / 32



Kernel methods Motivation

Motivation

Recall the question: how to choose nonlinear basis φ : RD → RM?

wTφ(x)

neural network is one approach: learn φ from data

kernel method is another one: sidestep the issue of choosing φ by
using kernel functions

8 / 32



Kernel methods Motivation

Motivation

Recall the question: how to choose nonlinear basis φ : RD → RM?

wTφ(x)

neural network is one approach: learn φ from data

kernel method is another one: sidestep the issue of choosing φ by
using kernel functions

8 / 32



Kernel methods Kernel Trick

What are Kernels?

Consider the following example, where the data is not linearly separable in
the ambient space but is separable feature space1

Schölkopf, Bernhard, and Alexander J. Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

9 / 32



Kernel methods Kernel Trick

What are Kernels?

We observe that mapping data points to higher dimension feature spaces
can help with separability, we can then use our favorite linear methods.

However, there are following issues:

1 Computations in higher dimensions are cumbersome, and the

2 Statistical issue of curse of dimensionality kicks-in, which means
that as dimension increases we may require exponentially more data
samples!

10 / 32



Kernel methods Kernel Trick

What are Kernels?

We observe that mapping data points to higher dimension feature spaces
can help with separability, we can then use our favorite linear methods.

However, there are following issues:

1 Computations in higher dimensions are cumbersome, and the

2 Statistical issue of curse of dimensionality kicks-in, which means
that as dimension increases we may require exponentially more data
samples!

10 / 32



Kernel methods Kernel Trick

What are Kernels?

We observe that mapping data points to higher dimension feature spaces
can help with separability, we can then use our favorite linear methods.

However, there are following issues:

1 Computations in higher dimensions are cumbersome, and the

2 Statistical issue of curse of dimensionality kicks-in, which means
that as dimension increases we may require exponentially more data
samples!

10 / 32



Kernel methods Kernel Trick

What are Kernels?

We observe that mapping data points to higher dimension feature spaces
can help with separability, we can then use our favorite linear methods.

However, there are following issues:

1 Computations in higher dimensions are cumbersome, and the

2 Statistical issue of curse of dimensionality kicks-in, which means
that as dimension increases we may require exponentially more data
samples!

10 / 32



Kernel methods Kernel Trick

Kernel Trick

Wishlist: It would be great to have an implicit way to work in higher
dimensions without having to do the computations there.

Kernels are special functions which allow us to accomplish exactly this!

How: Kernel functions allow us to compute inner-products in the feature
space while operating on the data samples in the ambient space.

Kernel Trick: To kernelize any given algorithm, our aim will be to write
the computations as inner-products, and then utilize Kernel functions to
do the computations.

Don’t need to know φ(·) : Since we use Kernel function we actually
don’t need to know the mapping φ(·). This means that φ(·) may be
infinite dimensional but we can still evaluate the inner-products in an
infinite dimensional feature space!!

11 / 32



Kernel methods Kernel Trick

Kernel Trick

Wishlist: It would be great to have an implicit way to work in higher
dimensions without having to do the computations there.

Kernels are special functions which allow us to accomplish exactly this!

How: Kernel functions allow us to compute inner-products in the feature
space while operating on the data samples in the ambient space.

Kernel Trick: To kernelize any given algorithm, our aim will be to write
the computations as inner-products, and then utilize Kernel functions to
do the computations.

Don’t need to know φ(·) : Since we use Kernel function we actually
don’t need to know the mapping φ(·). This means that φ(·) may be
infinite dimensional but we can still evaluate the inner-products in an
infinite dimensional feature space!!

11 / 32



Kernel methods Kernel Trick

Kernel Trick

Wishlist: It would be great to have an implicit way to work in higher
dimensions without having to do the computations there.

Kernels are special functions which allow us to accomplish exactly this!

How: Kernel functions allow us to compute inner-products in the feature
space while operating on the data samples in the ambient space.

Kernel Trick: To kernelize any given algorithm, our aim will be to write
the computations as inner-products, and then utilize Kernel functions to
do the computations.

Don’t need to know φ(·) : Since we use Kernel function we actually
don’t need to know the mapping φ(·). This means that φ(·) may be
infinite dimensional but we can still evaluate the inner-products in an
infinite dimensional feature space!!

11 / 32



Kernel methods Kernel Trick

Kernel Trick

Wishlist: It would be great to have an implicit way to work in higher
dimensions without having to do the computations there.

Kernels are special functions which allow us to accomplish exactly this!

How: Kernel functions allow us to compute inner-products in the feature
space while operating on the data samples in the ambient space.

Kernel Trick: To kernelize any given algorithm, our aim will be to write
the computations as inner-products, and then utilize Kernel functions to
do the computations.

Don’t need to know φ(·) : Since we use Kernel function we actually
don’t need to know the mapping φ(·). This means that φ(·) may be
infinite dimensional but we can still evaluate the inner-products in an
infinite dimensional feature space!!

11 / 32



Kernel methods Kernel Trick

Kernel Trick

Wishlist: It would be great to have an implicit way to work in higher
dimensions without having to do the computations there.

Kernels are special functions which allow us to accomplish exactly this!

How: Kernel functions allow us to compute inner-products in the feature
space while operating on the data samples in the ambient space.

Kernel Trick: To kernelize any given algorithm, our aim will be to write
the computations as inner-products, and then utilize Kernel functions to
do the computations.

Don’t need to know φ(·) : Since we use Kernel function we actually
don’t need to know the mapping φ(·). This means that φ(·) may be
infinite dimensional but we can still evaluate the inner-products in an
infinite dimensional feature space!!

11 / 32



Kernel methods Kernel Trick

Example

Let’s take a closer look at the example. Here, we consider the following
polynomial basis φ : R2 → R3:

φ(x) =

 x21
x22√
2x1x2



What is the inner product between φ(x) and φ(x′)?

φ(x)Tφ(x′) = x1
2x′1

2
+ 2x1x2x

′
1x
′
2 + x2

2x′2
2

= (x1x
′
1 + x2x

′
2)

2 = (xTx′)2

Therefore, the inner product in the new space is simply a function of the
inner product in the original space.

12 / 32



Kernel methods Kernel Trick

Example

Let’s take a closer look at the example. Here, we consider the following
polynomial basis φ : R2 → R3:

φ(x) =

 x21
x22√
2x1x2


What is the inner product between φ(x) and φ(x′)?

φ(x)Tφ(x′) = x1
2x′1

2
+ 2x1x2x

′
1x
′
2 + x2

2x′2
2

= (x1x
′
1 + x2x

′
2)

2 = (xTx′)2

Therefore, the inner product in the new space is simply a function of the
inner product in the original space.

12 / 32



Kernel methods Kernel Trick

Example

Let’s take a closer look at the example. Here, we consider the following
polynomial basis φ : R2 → R3:

φ(x) =

 x21
x22√
2x1x2


What is the inner product between φ(x) and φ(x′)?

φ(x)Tφ(x′) = x1
2x′1

2
+ 2x1x2x

′
1x
′
2 + x2

2x′2
2

= (x1x
′
1 + x2x

′
2)

2

= (xTx′)2

Therefore, the inner product in the new space is simply a function of the
inner product in the original space.

12 / 32



Kernel methods Kernel Trick

Example

Let’s take a closer look at the example. Here, we consider the following
polynomial basis φ : R2 → R3:

φ(x) =

 x21
x22√
2x1x2


What is the inner product between φ(x) and φ(x′)?

φ(x)Tφ(x′) = x1
2x′1

2
+ 2x1x2x

′
1x
′
2 + x2

2x′2
2

= (x1x
′
1 + x2x

′
2)

2 = (xTx′)2

Therefore, the inner product in the new space is simply a function of the
inner product in the original space.

12 / 32



Kernel methods Kernel Trick

Example

Let’s take a closer look at the example. Here, we consider the following
polynomial basis φ : R2 → R3:

φ(x) =

 x21
x22√
2x1x2


What is the inner product between φ(x) and φ(x′)?

φ(x)Tφ(x′) = x1
2x′1

2
+ 2x1x2x

′
1x
′
2 + x2

2x′2
2

= (x1x
′
1 + x2x

′
2)

2 = (xTx′)2

Therefore, the inner product in the new space is simply a function of the
inner product in the original space.

12 / 32



Kernel methods Kernel Trick

Another example

φ : RD → R2D is parameterized by θ:

φθ(x) =


cos(θx1)
sin(θx1)

...
cos(θxD)
sin(θxD)



What is the inner product between φθ(x) and φθ(x
′)?

φθ(x)
Tφθ(x

′) =
D∑
d=1

cos(θxd) cos(θx
′
d) + sin(θxd) sin(θx

′
d)

=

D∑
d=1

cos(θ(xd − x′d))

Once again, the inner product in the new space is a simple function of the
features in the original space.

13 / 32



Kernel methods Kernel Trick

Another example

φ : RD → R2D is parameterized by θ:

φθ(x) =


cos(θx1)
sin(θx1)

...
cos(θxD)
sin(θxD)


What is the inner product between φθ(x) and φθ(x

′)?

φθ(x)
Tφθ(x

′) =

D∑
d=1

cos(θxd) cos(θx
′
d) + sin(θxd) sin(θx

′
d)

=

D∑
d=1

cos(θ(xd − x′d))

Once again, the inner product in the new space is a simple function of the
features in the original space.

13 / 32



Kernel methods Kernel Trick

Another example

φ : RD → R2D is parameterized by θ:

φθ(x) =


cos(θx1)
sin(θx1)

...
cos(θxD)
sin(θxD)


What is the inner product between φθ(x) and φθ(x

′)?

φθ(x)
Tφθ(x

′) =

D∑
d=1

cos(θxd) cos(θx
′
d) + sin(θxd) sin(θx

′
d)

=

D∑
d=1

cos(θ(xd − x′d))

Once again, the inner product in the new space is a simple function of the
features in the original space.

13 / 32



Kernel methods Kernel Trick

Another example

φ : RD → R2D is parameterized by θ:

φθ(x) =


cos(θx1)
sin(θx1)

...
cos(θxD)
sin(θxD)


What is the inner product between φθ(x) and φθ(x

′)?

φθ(x)
Tφθ(x

′) =

D∑
d=1

cos(θxd) cos(θx
′
d) + sin(θxd) sin(θx

′
d)

=

D∑
d=1

cos(θ(xd − x′d))

Once again, the inner product in the new space is a simple function of the
features in the original space.

13 / 32



Kernel methods Kernel Trick

More complicated example

Based on φθ, define φL : RD → R2D(L+1) for some integer L:

φL(x) =


φ0(x)
φ 2π

L
(x)

φ2 2π
L
(x)

...
φL 2π

L
(x)



What is the inner product between φL(x) and φL(x
′)?

φL(x)
TφL(x

′) =

L∑
`=0

φ 2π`
L
(x)Tφ 2π`

L
(x′)

=

L∑
`=0

D∑
d=1

cos

(
2π`

L
(xd − x′d)

)

14 / 32



Kernel methods Kernel Trick

More complicated example

Based on φθ, define φL : RD → R2D(L+1) for some integer L:

φL(x) =


φ0(x)
φ 2π

L
(x)

φ2 2π
L
(x)

...
φL 2π

L
(x)


What is the inner product between φL(x) and φL(x

′)?

φL(x)
TφL(x

′) =

L∑
`=0

φ 2π`
L
(x)Tφ 2π`

L
(x′)

=

L∑
`=0

D∑
d=1

cos

(
2π`

L
(xd − x′d)

)
14 / 32



Kernel methods Kernel Trick

Infinite dimensional mapping

When L→∞, even if we cannot compute φ(x), a vector of infinite
dimension, we can still compute inner product:

φ∞(x)Tφ∞(x′) =

∫ 2π

0

D∑
d=1

cos(θ(xd − x′d)) dθ

=

D∑
d=1

sin(2π(xd − x′d))
xd − x′d

Again, a simple function of the original features.

Note that using this mapping in linear regression, we are learning a weight
w∗ with infinite dimension!

15 / 32



Kernel methods Kernel Trick

Infinite dimensional mapping

When L→∞, even if we cannot compute φ(x), a vector of infinite
dimension, we can still compute inner product:

φ∞(x)Tφ∞(x′) =

∫ 2π

0

D∑
d=1

cos(θ(xd − x′d)) dθ

=

D∑
d=1

sin(2π(xd − x′d))
xd − x′d

Again, a simple function of the original features.

Note that using this mapping in linear regression, we are learning a weight
w∗ with infinite dimension!

15 / 32



Kernel methods Kernel Trick

Infinite dimensional mapping

When L→∞, even if we cannot compute φ(x), a vector of infinite
dimension, we can still compute inner product:

φ∞(x)Tφ∞(x′) =

∫ 2π

0

D∑
d=1

cos(θ(xd − x′d)) dθ

=

D∑
d=1

sin(2π(xd − x′d))
xd − x′d

Again, a simple function of the original features.

Note that using this mapping in linear regression, we are learning a weight
w∗ with infinite dimension!

15 / 32



Kernel methods Kernel Trick

Kernel functions

Definition: a function k : RD ×RD → R is called a (positive semidefinite)
kernel function if there exists a function φ : RD → RM so that for any
x,x′ ∈ RD,

k(x,x′) = φ(x)Tφ(x′)

Examples we have seen

k(x,x′) = (xTx′)2

k(x,x′) =

D∑
d=1

sin(2π(xd − x′d))
xd − x′d

16 / 32



Kernel methods Kernel Trick

Kernel functions

Definition: a function k : RD ×RD → R is called a (positive semidefinite)
kernel function if there exists a function φ : RD → RM so that for any
x,x′ ∈ RD,

k(x,x′) = φ(x)Tφ(x′)

Examples we have seen

k(x,x′) = (xTx′)2

k(x,x′) =

D∑
d=1

sin(2π(xd − x′d))
xd − x′d

16 / 32



Kernel methods Kernel Trick

Using kernel functions

Choosing a nonlinear basis φ becomes choosing a kernel function.

As long as computing the kernel function is more efficient, we should apply
the kernel trick.

Gram/kernel matrix needs to be positive semi-definite and symmetric

K = ΦΦT =


k(x1,x1) k(x1,x2) · · · k(x1,xN )
k(x2,x1) k(x2,x2) · · · k(x2,xN )

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN )


In fact, k is a kernel if and only if K is positive semidefinite for any N and
any x1, x2, . . ., xN (formalized by the Mercer theorem).

useful for proving that a function is not a kernel

17 / 32



Kernel methods Kernel Trick

Using kernel functions

Choosing a nonlinear basis φ becomes choosing a kernel function.

As long as computing the kernel function is more efficient, we should apply
the kernel trick.

Gram/kernel matrix needs to be positive semi-definite and symmetric

K = ΦΦT =


k(x1,x1) k(x1,x2) · · · k(x1,xN )
k(x2,x1) k(x2,x2) · · · k(x2,xN )

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN )


In fact, k is a kernel if and only if K is positive semidefinite for any N and
any x1, x2, . . ., xN (formalized by the Mercer theorem).

useful for proving that a function is not a kernel

17 / 32



Kernel methods Kernel Trick

Using kernel functions

Choosing a nonlinear basis φ becomes choosing a kernel function.

As long as computing the kernel function is more efficient, we should apply
the kernel trick.

Gram/kernel matrix needs to be positive semi-definite and symmetric

K = ΦΦT =


k(x1,x1) k(x1,x2) · · · k(x1,xN )
k(x2,x1) k(x2,x2) · · · k(x2,xN )

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN )



In fact, k is a kernel if and only if K is positive semidefinite for any N and
any x1, x2, . . ., xN (formalized by the Mercer theorem).

useful for proving that a function is not a kernel

17 / 32



Kernel methods Kernel Trick

Using kernel functions

Choosing a nonlinear basis φ becomes choosing a kernel function.

As long as computing the kernel function is more efficient, we should apply
the kernel trick.

Gram/kernel matrix needs to be positive semi-definite and symmetric

K = ΦΦT =


k(x1,x1) k(x1,x2) · · · k(x1,xN )
k(x2,x1) k(x2,x2) · · · k(x2,xN )

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN )


In fact, k is a kernel if and only if K is positive semidefinite for any N and
any x1, x2, . . ., xN (formalized by the Mercer theorem).

useful for proving that a function is not a kernel

17 / 32



Kernel methods Kernel Trick

Using kernel functions

Choosing a nonlinear basis φ becomes choosing a kernel function.

As long as computing the kernel function is more efficient, we should apply
the kernel trick.

Gram/kernel matrix needs to be positive semi-definite and symmetric

K = ΦΦT =


k(x1,x1) k(x1,x2) · · · k(x1,xN )
k(x2,x1) k(x2,x2) · · · k(x2,xN )

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN )


In fact, k is a kernel if and only if K is positive semidefinite for any N and
any x1, x2, . . ., xN (formalized by the Mercer theorem).

useful for proving that a function is not a kernel

17 / 32



Kernel methods Kernel Trick

Examples that are not kernels

Function
k(x,x′) = ‖x− x′‖22

is not a kernel, why?

If it is a kernel, the kernel matrix for two data points x1 and x2:

K =

(
0 ‖x1 − x2‖22

‖x1 − x2‖22 0

)
must be positive semidefinite, but is it?

18 / 32



Kernel methods Kernel Trick

Examples that are not kernels

Function
k(x,x′) = ‖x− x′‖22

is not a kernel, why?

If it is a kernel, the kernel matrix for two data points x1 and x2:

K =

(
0 ‖x1 − x2‖22

‖x1 − x2‖22 0

)
must be positive semidefinite,

but is it?

18 / 32



Kernel methods Kernel Trick

Examples that are not kernels

Function
k(x,x′) = ‖x− x′‖22

is not a kernel, why?

If it is a kernel, the kernel matrix for two data points x1 and x2:

K =

(
0 ‖x1 − x2‖22

‖x1 − x2‖22 0

)
must be positive semidefinite, but is it?

18 / 32



Kernel methods Kernel Trick

More examples of kernel functions

Two most commonly used kernel functions in practice:

Polynomial kernel
k(x,x′) = (xTx′ + c)d

for c ≥ 0 and d is a positive integer.

Gaussian kernel or Radial basis function (RBF) kernel

k(x,x′) = e−
‖x−x′‖22

2σ2

for some σ > 0.

19 / 32



Kernel methods Kernel Trick

More examples of kernel functions

Two most commonly used kernel functions in practice:

Polynomial kernel
k(x,x′) = (xTx′ + c)d

for c ≥ 0 and d is a positive integer.

Gaussian kernel or Radial basis function (RBF) kernel

k(x,x′) = e−
‖x−x′‖22

2σ2

for some σ > 0.

19 / 32



Kernel methods Kernel Trick

Composing kernels

Creating more kernel functions using the following rules:

If k1(·, ·) and k2(·, ·) are kernels, the followings are kernels too

conical combination: αk1(·, ·) + βk2(·, ·) if α, β ≥ 0

product: k1(·, ·)k2(·, ·)

exponential: ek(·,·)

· · ·

Verify using the definition of kernel!

20 / 32



Kernel methods Kernel Trick

Composing kernels

Creating more kernel functions using the following rules:

If k1(·, ·) and k2(·, ·) are kernels, the followings are kernels too

conical combination: αk1(·, ·) + βk2(·, ·) if α, β ≥ 0

product: k1(·, ·)k2(·, ·)

exponential: ek(·,·)

· · ·

Verify using the definition of kernel!

20 / 32



Kernel methods Kernel Trick

Composing kernels

Creating more kernel functions using the following rules:

If k1(·, ·) and k2(·, ·) are kernels, the followings are kernels too

conical combination: αk1(·, ·) + βk2(·, ·) if α, β ≥ 0

product: k1(·, ·)k2(·, ·)

exponential: ek(·,·)

· · ·

Verify using the definition of kernel!

20 / 32



Kernel methods Kernel Trick

Composing kernels

Creating more kernel functions using the following rules:

If k1(·, ·) and k2(·, ·) are kernels, the followings are kernels too

conical combination: αk1(·, ·) + βk2(·, ·) if α, β ≥ 0

product: k1(·, ·)k2(·, ·)

exponential: ek(·,·)

· · ·

Verify using the definition of kernel!

20 / 32



Kernel methods Kernel Trick

Composing kernels

Creating more kernel functions using the following rules:

If k1(·, ·) and k2(·, ·) are kernels, the followings are kernels too

conical combination: αk1(·, ·) + βk2(·, ·) if α, β ≥ 0

product: k1(·, ·)k2(·, ·)

exponential: ek(·,·)

· · ·

Verify using the definition of kernel!

20 / 32



Kernel methods Kernel Trick

Composing kernels

Creating more kernel functions using the following rules:

If k1(·, ·) and k2(·, ·) are kernels, the followings are kernels too

conical combination: αk1(·, ·) + βk2(·, ·) if α, β ≥ 0

product: k1(·, ·)k2(·, ·)

exponential: ek(·,·)

· · ·

Verify using the definition of kernel!

20 / 32



Kernel methods Kernel Trick

Case study: regularized linear regression

Kernel methods work for many problems and we take regularized linear
regression as an example.

Recall the regularized least square solution, where φ : RD → RM:

w∗ = argmin
w

F (w)

= argmin
w

(
‖Φw − y‖22 + λ‖w‖22

)
=
(
ΦTΦ + λI

)−1
ΦTy

Φ =


φ(x1)

T

φ(x2)
T

...
φ(xN)

T

 , y =


y1
y2
...
yN



Issue: operate in space RM and M could be huge or even infinity!
Our aim: pose these computation as inner-products between φ(·).

21 / 32



Kernel methods Kernel Trick

Case study: regularized linear regression

Kernel methods work for many problems and we take regularized linear
regression as an example.

Recall the regularized least square solution, where φ : RD → RM:

w∗ = argmin
w

F (w)

= argmin
w

(
‖Φw − y‖22 + λ‖w‖22

)
=
(
ΦTΦ + λI

)−1
ΦTy

Φ =


φ(x1)

T

φ(x2)
T

...
φ(xN)

T

 , y =


y1
y2
...
yN



Issue: operate in space RM and M could be huge or even infinity!
Our aim: pose these computation as inner-products between φ(·).

21 / 32



Kernel methods Kernel Trick

Case study: regularized linear regression

Kernel methods work for many problems and we take regularized linear
regression as an example.

Recall the regularized least square solution, where φ : RD → RM:

w∗ = argmin
w

F (w)

= argmin
w

(
‖Φw − y‖22 + λ‖w‖22

)
=
(
ΦTΦ + λI

)−1
ΦTy

Φ =


φ(x1)

T

φ(x2)
T

...
φ(xN)

T

 , y =


y1
y2
...
yN



Issue: operate in space RM and M could be huge or even infinity!

Our aim: pose these computation as inner-products between φ(·).

21 / 32



Kernel methods Kernel Trick

Case study: regularized linear regression

Kernel methods work for many problems and we take regularized linear
regression as an example.

Recall the regularized least square solution, where φ : RD → RM:

w∗ = argmin
w

F (w)

= argmin
w

(
‖Φw − y‖22 + λ‖w‖22

)
=
(
ΦTΦ + λI

)−1
ΦTy

Φ =


φ(x1)

T

φ(x2)
T

...
φ(xN)

T

 , y =


y1
y2
...
yN



Issue: operate in space RM and M could be huge or even infinity!
Our aim: pose these computation as inner-products between φ(·).

21 / 32



Kernel methods Kernel Trick

A closer look at the least square solution, where

By setting the gradient of F (w) = ‖Φw − y‖22 + λ‖w‖22 to be 0:

ΦT(Φw∗ − y) + λw∗ = 0

we know

w∗ =
1

λ
ΦT(y −Φw∗) = ΦTα =

N∑
n=1

αnφ(xn)

Thus the least square solution is a linear combination of features!

Note this is true for perceptron and many other problems.

Of course, the above calculation does not show what α is.

22 / 32



Kernel methods Kernel Trick

A closer look at the least square solution, where

By setting the gradient of F (w) = ‖Φw − y‖22 + λ‖w‖22 to be 0:

ΦT(Φw∗ − y) + λw∗ = 0

we know

w∗ =
1

λ
ΦT(y −Φw∗) = ΦTα =

N∑
n=1

αnφ(xn)

Thus the least square solution is a linear combination of features!

Note this is true for perceptron and many other problems.

Of course, the above calculation does not show what α is.

22 / 32



Kernel methods Kernel Trick

A closer look at the least square solution, where

By setting the gradient of F (w) = ‖Φw − y‖22 + λ‖w‖22 to be 0:

ΦT(Φw∗ − y) + λw∗ = 0

we know

w∗ =
1

λ
ΦT(y −Φw∗) = ΦTα =

N∑
n=1

αnφ(xn)

Thus the least square solution is a linear combination of features!

Note this is true for perceptron and many other problems.

Of course, the above calculation does not show what α is.

22 / 32



Kernel methods Kernel Trick

A closer look at the least square solution, where

By setting the gradient of F (w) = ‖Φw − y‖22 + λ‖w‖22 to be 0:

ΦT(Φw∗ − y) + λw∗ = 0

we know

w∗ =
1

λ
ΦT(y −Φw∗) = ΦTα =

N∑
n=1

αnφ(xn)

Thus the least square solution is a linear combination of features!

Note this is true for perceptron and many other problems.

Of course, the above calculation does not show what α is.

22 / 32



Kernel methods Kernel Trick

A closer look at the least square solution, where

By setting the gradient of F (w) = ‖Φw − y‖22 + λ‖w‖22 to be 0:

ΦT(Φw∗ − y) + λw∗ = 0

we know

w∗ =
1

λ
ΦT(y −Φw∗) = ΦTα =

N∑
n=1

αnφ(xn)

Thus the least square solution is a linear combination of features!

Note this is true for perceptron and many other problems.

Of course, the above calculation does not show what α is.

22 / 32



Kernel methods Kernel Trick

Why is this helpful?

Assuming we know α, the prediction of w∗ on a new example x is

w∗Tφ(x) =

N∑
n=1

αnφ(xn)
Tφ(x) =

N∑
n=1

αnk(xn,x)

Therefore we do not really need to know w∗. Only inner products in the
new feature space matter!

As we’ve seen, we can now use Kernels to compute inner products without
knowing φ.

Also, this is a non-parametric method!

But we need to figure out what α is first!

23 / 32



Kernel methods Kernel Trick

Why is this helpful?

Assuming we know α, the prediction of w∗ on a new example x is

w∗Tφ(x) =

N∑
n=1

αnφ(xn)
Tφ(x) =

N∑
n=1

αnk(xn,x)

Therefore we do not really need to know w∗. Only inner products in the
new feature space matter!

As we’ve seen, we can now use Kernels to compute inner products without
knowing φ.

Also, this is a non-parametric method!

But we need to figure out what α is first!

23 / 32



Kernel methods Kernel Trick

Why is this helpful?

Assuming we know α, the prediction of w∗ on a new example x is

w∗Tφ(x) =

N∑
n=1

αnφ(xn)
Tφ(x) =

N∑
n=1

αnk(xn,x)

Therefore we do not really need to know w∗. Only inner products in the
new feature space matter!

As we’ve seen, we can now use Kernels to compute inner products without
knowing φ.

Also, this is a non-parametric method!

But we need to figure out what α is first!

23 / 32



Kernel methods Kernel Trick

Why is this helpful?

Assuming we know α, the prediction of w∗ on a new example x is

w∗Tφ(x) =

N∑
n=1

αnφ(xn)
Tφ(x) =

N∑
n=1

αnk(xn,x)

Therefore we do not really need to know w∗. Only inner products in the
new feature space matter!

As we’ve seen, we can now use Kernels to compute inner products without
knowing φ.

Also, this is a non-parametric method!

But we need to figure out what α is first!

23 / 32



Kernel methods Kernel Trick

Why is this helpful?

Assuming we know α, the prediction of w∗ on a new example x is

w∗Tφ(x) =

N∑
n=1

αnφ(xn)
Tφ(x) =

N∑
n=1

αnk(xn,x)

Therefore we do not really need to know w∗. Only inner products in the
new feature space matter!

As we’ve seen, we can now use Kernels to compute inner products without
knowing φ.

Also, this is a non-parametric method!

But we need to figure out what α is first!

23 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Plugging in w = ΦTα into F (w) gives

G(α) = F (ΦTα)

= ‖ΦΦTα− y‖22 + λ‖ΦTα‖22
= ‖Kα− y‖22 + λαTKα (K = ΦΦT)

= αTKTKα− 2yTKα+ λαTKα+ cnt.

= αT(K2 + λK)α− 2yTKα+ cnt. (KT =K)

This is sometime called the dual formulation of linear regression.

K = ΦΦT ∈ RN×N is called Gram matrix or kernel matrix where the
(i, j) entry is

φ(xi)
Tφ(xj)

24 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Plugging in w = ΦTα into F (w) gives

G(α) = F (ΦTα)

= ‖ΦΦTα− y‖22 + λ‖ΦTα‖22

= ‖Kα− y‖22 + λαTKα (K = ΦΦT)

= αTKTKα− 2yTKα+ λαTKα+ cnt.

= αT(K2 + λK)α− 2yTKα+ cnt. (KT =K)

This is sometime called the dual formulation of linear regression.

K = ΦΦT ∈ RN×N is called Gram matrix or kernel matrix where the
(i, j) entry is

φ(xi)
Tφ(xj)

24 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Plugging in w = ΦTα into F (w) gives

G(α) = F (ΦTα)

= ‖ΦΦTα− y‖22 + λ‖ΦTα‖22
= ‖Kα− y‖22 + λαTKα (K = ΦΦT)

= αTKTKα− 2yTKα+ λαTKα+ cnt.

= αT(K2 + λK)α− 2yTKα+ cnt. (KT =K)

This is sometime called the dual formulation of linear regression.

K = ΦΦT ∈ RN×N is called Gram matrix or kernel matrix where the
(i, j) entry is

φ(xi)
Tφ(xj)

24 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Plugging in w = ΦTα into F (w) gives

G(α) = F (ΦTα)

= ‖ΦΦTα− y‖22 + λ‖ΦTα‖22
= ‖Kα− y‖22 + λαTKα (K = ΦΦT)

= αTKTKα− 2yTKα+ λαTKα+ cnt.

= αT(K2 + λK)α− 2yTKα+ cnt. (KT =K)

This is sometime called the dual formulation of linear regression.

K = ΦΦT ∈ RN×N is called Gram matrix or kernel matrix where the
(i, j) entry is

φ(xi)
Tφ(xj)

24 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Plugging in w = ΦTα into F (w) gives

G(α) = F (ΦTα)

= ‖ΦΦTα− y‖22 + λ‖ΦTα‖22
= ‖Kα− y‖22 + λαTKα (K = ΦΦT)

= αTKTKα− 2yTKα+ λαTKα+ cnt.

= αT(K2 + λK)α− 2yTKα+ cnt. (KT =K)

This is sometime called the dual formulation of linear regression.

K = ΦΦT ∈ RN×N is called Gram matrix or kernel matrix where the
(i, j) entry is

φ(xi)
Tφ(xj)

24 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Plugging in w = ΦTα into F (w) gives

G(α) = F (ΦTα)

= ‖ΦΦTα− y‖22 + λ‖ΦTα‖22
= ‖Kα− y‖22 + λαTKα (K = ΦΦT)

= αTKTKα− 2yTKα+ λαTKα+ cnt.

= αT(K2 + λK)α− 2yTKα+ cnt. (KT =K)

This is sometime called the dual formulation of linear regression.

K = ΦΦT ∈ RN×N is called Gram matrix or kernel matrix where the
(i, j) entry is

φ(xi)
Tφ(xj)

24 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Plugging in w = ΦTα into F (w) gives

G(α) = F (ΦTα)

= ‖ΦΦTα− y‖22 + λ‖ΦTα‖22
= ‖Kα− y‖22 + λαTKα (K = ΦΦT)

= αTKTKα− 2yTKα+ λαTKα+ cnt.

= αT(K2 + λK)α− 2yTKα+ cnt. (KT =K)

This is sometime called the dual formulation of linear regression.

K = ΦΦT ∈ RN×N is called Gram matrix or kernel matrix where the
(i, j) entry is

φ(xi)
Tφ(xj)

24 / 32



Kernel methods Dual formulation of linear regression

Examples of kernel matrix K

3 data points in R
x1 = −1, x2 = 0, x3 = 1

φ is polynomial basis with degree 4:

φ(x) =


1
x
x2

x3



φ(x1) =


1
−1
1
−1

 φ(x2) =


1
0
0
0

 φ(x3) =


1
1
1
1



25 / 32



Kernel methods Dual formulation of linear regression

Examples of kernel matrix K

3 data points in R
x1 = −1, x2 = 0, x3 = 1

φ is polynomial basis with degree 4:

φ(x) =


1
x
x2

x3



φ(x1) =


1
−1
1
−1

 φ(x2) =


1
0
0
0

 φ(x3) =


1
1
1
1


25 / 32



Kernel methods Dual formulation of linear regression

Calculation of the Gram matrix K

φ(x1) =


1
−1
1
−1

 φ(x2) =


1
0
0
0

 φ(x3) =


1
1
1
1


Gram/Kernel matrix

K =

 φ(x1)
Tφ(x1) φ(x1)

Tφ(x2) φ(x1)
Tφ(x3)

φ(x2)
Tφ(x1) φ(x2)

Tφ(x2) φ(x2)
Tφ(x3)

φ(x3)
Tφ(x1) φ(x3)

Tφ(x2) φ(x3)
Tφ(x3)


=

 4 1 0
1 1 1
0 1 4



26 / 32



Kernel methods Dual formulation of linear regression

Gram matrix vs covariance matrix

dimensions entry (i, j) property

ΦΦT

N× N φ(xi)
Tφ(xj) both are symmetric and

positive semidefinite

ΦTΦ

M×M
∑N

n=1 φ(xn)iφ(xn)j

27 / 32



Kernel methods Dual formulation of linear regression

Gram matrix vs covariance matrix

dimensions entry (i, j) property

ΦΦT N× N

φ(xi)
Tφ(xj) both are symmetric and

positive semidefinite

ΦTΦ

M×M
∑N

n=1 φ(xn)iφ(xn)j

27 / 32



Kernel methods Dual formulation of linear regression

Gram matrix vs covariance matrix

dimensions entry (i, j) property

ΦΦT N× N

φ(xi)
Tφ(xj) both are symmetric and

positive semidefinite

ΦTΦ M×M

∑N
n=1 φ(xn)iφ(xn)j

27 / 32



Kernel methods Dual formulation of linear regression

Gram matrix vs covariance matrix

dimensions entry (i, j) property

ΦΦT N× N φ(xi)
Tφ(xj)

both are symmetric and
positive semidefinite

ΦTΦ M×M

∑N
n=1 φ(xn)iφ(xn)j

27 / 32



Kernel methods Dual formulation of linear regression

Gram matrix vs covariance matrix

dimensions entry (i, j) property

ΦΦT N× N φ(xi)
Tφ(xj)

both are symmetric and
positive semidefinite

ΦTΦ M×M
∑N

n=1 φ(xn)iφ(xn)j

27 / 32



Kernel methods Dual formulation of linear regression

Gram matrix vs covariance matrix

dimensions entry (i, j) property

ΦΦT N× N φ(xi)
Tφ(xj) both are symmetric and

positive semidefiniteΦTΦ M×M
∑N

n=1 φ(xn)iφ(xn)j

27 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Minimize the dual formulation

G(α) = αT(K2 + λK)α− 2yTKα+ cnt.

Setting the derivative to 0 we have

0 = (K2 + λK)α−Ky

=K ((K + λI)α− y)

Thus α = (K + λI)−1y is a minimizer and we obtain

w∗ = ΦTα = ΦT(K + λI)−1y

Exercise: are there other minimizers?

and are there other w∗’s?

28 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Minimize the dual formulation

G(α) = αT(K2 + λK)α− 2yTKα+ cnt.

Setting the derivative to 0 we have

0 = (K2 + λK)α−Ky

=K ((K + λI)α− y)

Thus α = (K + λI)−1y is a minimizer and we obtain

w∗ = ΦTα = ΦT(K + λI)−1y

Exercise: are there other minimizers?

and are there other w∗’s?

28 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Minimize the dual formulation

G(α) = αT(K2 + λK)α− 2yTKα+ cnt.

Setting the derivative to 0 we have

0 = (K2 + λK)α−Ky =K ((K + λI)α− y)

Thus α = (K + λI)−1y is a minimizer and we obtain

w∗ = ΦTα = ΦT(K + λI)−1y

Exercise: are there other minimizers?

and are there other w∗’s?

28 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Minimize the dual formulation

G(α) = αT(K2 + λK)α− 2yTKα+ cnt.

Setting the derivative to 0 we have

0 = (K2 + λK)α−Ky =K ((K + λI)α− y)

Thus α = (K + λI)−1y is a minimizer

and we obtain

w∗ = ΦTα = ΦT(K + λI)−1y

Exercise: are there other minimizers?

and are there other w∗’s?

28 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Minimize the dual formulation

G(α) = αT(K2 + λK)α− 2yTKα+ cnt.

Setting the derivative to 0 we have

0 = (K2 + λK)α−Ky =K ((K + λI)α− y)

Thus α = (K + λI)−1y is a minimizer and we obtain

w∗ = ΦTα = ΦT(K + λI)−1y

Exercise: are there other minimizers?

and are there other w∗’s?

28 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Minimize the dual formulation

G(α) = αT(K2 + λK)α− 2yTKα+ cnt.

Setting the derivative to 0 we have

0 = (K2 + λK)α−Ky =K ((K + λI)α− y)

Thus α = (K + λI)−1y is a minimizer and we obtain

w∗ = ΦTα = ΦT(K + λI)−1y

Exercise: are there other minimizers?

and are there other w∗’s?

28 / 32



Kernel methods Dual formulation of linear regression

How to find α?

Minimize the dual formulation

G(α) = αT(K2 + λK)α− 2yTKα+ cnt.

Setting the derivative to 0 we have

0 = (K2 + λK)α−Ky =K ((K + λI)α− y)

Thus α = (K + λI)−1y is a minimizer and we obtain

w∗ = ΦTα = ΦT(K + λI)−1y

Exercise: are there other minimizers? and are there other w∗’s?

28 / 32



Kernel methods Dual formulation of linear regression

Comparing two solutions

Minimizing F (w) gives w∗ = (ΦTΦ + λI)−1ΦTy

Minimizing G(α) gives w∗ = ΦT(ΦΦT + λI)−1y

Note I has different dimensions in these two formulas.

Natural question: are they the same or different?

They have to be the same because F (w) has a unique minimizer!

And they are:

(ΦTΦ + λI)−1ΦTy

= (ΦTΦ + λI)−1ΦT(ΦΦT + λI)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦΦT + λΦT)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦ + λI)ΦT(ΦΦT + λI)−1y

= ΦT(ΦΦT + λI)−1y

29 / 32



Kernel methods Dual formulation of linear regression

Comparing two solutions

Minimizing F (w) gives w∗ = (ΦTΦ + λI)−1ΦTy

Minimizing G(α) gives w∗ = ΦT(ΦΦT + λI)−1y

Note I has different dimensions in these two formulas.

Natural question: are they the same or different?

They have to be the same because F (w) has a unique minimizer!

And they are:

(ΦTΦ + λI)−1ΦTy

= (ΦTΦ + λI)−1ΦT(ΦΦT + λI)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦΦT + λΦT)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦ + λI)ΦT(ΦΦT + λI)−1y

= ΦT(ΦΦT + λI)−1y

29 / 32



Kernel methods Dual formulation of linear regression

Comparing two solutions

Minimizing F (w) gives w∗ = (ΦTΦ + λI)−1ΦTy

Minimizing G(α) gives w∗ = ΦT(ΦΦT + λI)−1y

Note I has different dimensions in these two formulas.

Natural question: are they the same or different?

They have to be the same because F (w) has a unique minimizer!

And they are:

(ΦTΦ + λI)−1ΦTy

= (ΦTΦ + λI)−1ΦT(ΦΦT + λI)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦΦT + λΦT)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦ + λI)ΦT(ΦΦT + λI)−1y

= ΦT(ΦΦT + λI)−1y

29 / 32



Kernel methods Dual formulation of linear regression

Comparing two solutions

Minimizing F (w) gives w∗ = (ΦTΦ + λI)−1ΦTy

Minimizing G(α) gives w∗ = ΦT(ΦΦT + λI)−1y

Note I has different dimensions in these two formulas.

Natural question: are they the same or different?

They have to be the same because F (w) has a unique minimizer!

And they are:

(ΦTΦ + λI)−1ΦTy

= (ΦTΦ + λI)−1ΦT(ΦΦT + λI)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦΦT + λΦT)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦ + λI)ΦT(ΦΦT + λI)−1y

= ΦT(ΦΦT + λI)−1y

29 / 32



Kernel methods Dual formulation of linear regression

Comparing two solutions

Minimizing F (w) gives w∗ = (ΦTΦ + λI)−1ΦTy

Minimizing G(α) gives w∗ = ΦT(ΦΦT + λI)−1y

Note I has different dimensions in these two formulas.

Natural question: are they the same or different?

They have to be the same because F (w) has a unique minimizer!

And they are:

(ΦTΦ + λI)−1ΦTy

= (ΦTΦ + λI)−1ΦT(ΦΦT + λI)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦΦT + λΦT)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦ + λI)ΦT(ΦΦT + λI)−1y

= ΦT(ΦΦT + λI)−1y

29 / 32



Kernel methods Dual formulation of linear regression

Comparing two solutions

Minimizing F (w) gives w∗ = (ΦTΦ + λI)−1ΦTy

Minimizing G(α) gives w∗ = ΦT(ΦΦT + λI)−1y

Note I has different dimensions in these two formulas.

Natural question: are they the same or different?

They have to be the same because F (w) has a unique minimizer!

And they are:

(ΦTΦ + λI)−1ΦTy

= (ΦTΦ + λI)−1ΦT(ΦΦT + λI)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦΦT + λΦT)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦ + λI)ΦT(ΦΦT + λI)−1y

= ΦT(ΦΦT + λI)−1y

29 / 32



Kernel methods Dual formulation of linear regression

Comparing two solutions

Minimizing F (w) gives w∗ = (ΦTΦ + λI)−1ΦTy

Minimizing G(α) gives w∗ = ΦT(ΦΦT + λI)−1y

Note I has different dimensions in these two formulas.

Natural question: are they the same or different?

They have to be the same because F (w) has a unique minimizer!

And they are:

(ΦTΦ + λI)−1ΦTy

= (ΦTΦ + λI)−1ΦT(ΦΦT + λI)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦΦT + λΦT)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦ + λI)ΦT(ΦΦT + λI)−1y

= ΦT(ΦΦT + λI)−1y

29 / 32



Kernel methods Dual formulation of linear regression

Comparing two solutions

Minimizing F (w) gives w∗ = (ΦTΦ + λI)−1ΦTy

Minimizing G(α) gives w∗ = ΦT(ΦΦT + λI)−1y

Note I has different dimensions in these two formulas.

Natural question: are they the same or different?

They have to be the same because F (w) has a unique minimizer!

And they are:

(ΦTΦ + λI)−1ΦTy

= (ΦTΦ + λI)−1ΦT(ΦΦT + λI)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦΦT + λΦT)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦ + λI)ΦT(ΦΦT + λI)−1y

= ΦT(ΦΦT + λI)−1y

29 / 32



Kernel methods Dual formulation of linear regression

Comparing two solutions

Minimizing F (w) gives w∗ = (ΦTΦ + λI)−1ΦTy

Minimizing G(α) gives w∗ = ΦT(ΦΦT + λI)−1y

Note I has different dimensions in these two formulas.

Natural question: are they the same or different?

They have to be the same because F (w) has a unique minimizer!

And they are:

(ΦTΦ + λI)−1ΦTy

= (ΦTΦ + λI)−1ΦT(ΦΦT + λI)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦΦT + λΦT)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦ + λI)ΦT(ΦΦT + λI)−1y

= ΦT(ΦΦT + λI)−1y

29 / 32



Kernel methods Dual formulation of linear regression

Then what is the difference?

First, computing (ΦΦT + λI)−1 can be more efficient than computing
(ΦTΦ + λI)−1 when N ≤ M.

More importantly, computing α = (K + λI)−1y also only requires
computing inner products in the new feature space!

Now we can conclude that the exact form of φ(·) is not essential; all we
need is computing inner products φ(x)Tφ(x′).

For some φ it is indeed possible to compute φ(x)Tφ(x′) without
computing/knowing φ. This is the kernel trick.

30 / 32



Kernel methods Dual formulation of linear regression

Then what is the difference?

First, computing (ΦΦT + λI)−1 can be more efficient than computing
(ΦTΦ + λI)−1 when N ≤ M.

More importantly, computing α = (K + λI)−1y also only requires
computing inner products in the new feature space!

Now we can conclude that the exact form of φ(·) is not essential; all we
need is computing inner products φ(x)Tφ(x′).

For some φ it is indeed possible to compute φ(x)Tφ(x′) without
computing/knowing φ. This is the kernel trick.

30 / 32



Kernel methods Dual formulation of linear regression

Then what is the difference?

First, computing (ΦΦT + λI)−1 can be more efficient than computing
(ΦTΦ + λI)−1 when N ≤ M.

More importantly, computing α = (K + λI)−1y also only requires
computing inner products in the new feature space!

Now we can conclude that the exact form of φ(·) is not essential; all we
need is computing inner products φ(x)Tφ(x′).

For some φ it is indeed possible to compute φ(x)Tφ(x′) without
computing/knowing φ. This is the kernel trick.

30 / 32



Kernel methods Dual formulation of linear regression

Then what is the difference?

First, computing (ΦΦT + λI)−1 can be more efficient than computing
(ΦTΦ + λI)−1 when N ≤ M.

More importantly, computing α = (K + λI)−1y also only requires
computing inner products in the new feature space!

Now we can conclude that the exact form of φ(·) is not essential; all we
need is computing inner products φ(x)Tφ(x′).

For some φ it is indeed possible to compute φ(x)Tφ(x′) without
computing/knowing φ. This is the kernel trick.

30 / 32



Kernel methods Dual formulation of linear regression

Kernelizing other ML algorithms

Kernel trick is applicable to many ML algorithms:

nearest neighbor classifier

perceptron

logistic regression

SVM

· · ·

31 / 32



Kernel methods Dual formulation of linear regression

Example: Kernelized NNC

For NNC with L2 distance, the key is to compute for any two points x, x′

d(x,x′) = ‖x− x′‖22 = xTx+ x′
T
x′ − 2xTx′

With a kernel function k, we simply compute

dkernel(x,x′) = k(x,x) + k(x′,x′)− 2k(x,x′)

which by definition is the L2 distance in a new feature space

dkernel(x,x′) = ‖φ(x)− φ(x′)‖22

32 / 32



Kernel methods Dual formulation of linear regression

Example: Kernelized NNC

For NNC with L2 distance, the key is to compute for any two points x, x′

d(x,x′) = ‖x− x′‖22 = xTx+ x′
T
x′ − 2xTx′

With a kernel function k, we simply compute

dkernel(x,x′) = k(x,x) + k(x′,x′)− 2k(x,x′)

which by definition is the L2 distance in a new feature space

dkernel(x,x′) = ‖φ(x)− φ(x′)‖22

32 / 32



Kernel methods Dual formulation of linear regression

Example: Kernelized NNC

For NNC with L2 distance, the key is to compute for any two points x, x′

d(x,x′) = ‖x− x′‖22 = xTx+ x′
T
x′ − 2xTx′

With a kernel function k, we simply compute

dkernel(x,x′) = k(x,x) + k(x′,x′)− 2k(x,x′)

which by definition is the L2 distance in a new feature space

dkernel(x,x′) = ‖φ(x)− φ(x′)‖22

32 / 32


	Logistics
	Review of last lecture
	Kernel methods

