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Logistics

Logistics

HW 3 is due today.

Solutions for Quiz 1 were released.
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Decision trees The model

Decision tree

We have seen different ML models for classification/regression:

linear models, neural nets and other nonlinear models induced by
kernels

Decision tree is yet another one:

nonlinear in general

works for both classification and regression; we focus on classification

one key advantage is good interpretability

used to be very popular; ensemble of trees (i.e. “forest”) can still be
very effective
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Decision trees The model

Example

Many decisions are made based on some tree structure

Medical treatment

Fever 

𝑇 > 100 𝑇 < 100 

Treatment #1 Muscle Pain 

Treatment #2 

High 

Treatment #3 

Low 

Salary in a company

Degree 

High School College Graduate 

Work Experience Work Experience Work Experience 

< 5yr > 5yr 

$𝑿𝟏 $𝑿𝟐 

< 5yr > 5yr 

$𝑿𝟑 $𝑿𝟒 

< 5yr > 5yr 

$𝑿𝟓 $𝑿𝟔 

7 / 26



Decision trees The model

Example

Many decisions are made based on some tree structure

Medical treatment

Fever 

𝑇 > 100 𝑇 < 100 

Treatment #1 Muscle Pain 

Treatment #2 

High 

Treatment #3 

Low 

Salary in a company

Degree 

High School College Graduate 

Work Experience Work Experience Work Experience 

< 5yr > 5yr 

$𝑿𝟏 $𝑿𝟐 

< 5yr > 5yr 

$𝑿𝟑 $𝑿𝟒 

< 5yr > 5yr 

$𝑿𝟓 $𝑿𝟔 

7 / 26



Decision trees The model

Tree terminology

Node 

Root 

Edge 

Leaf 
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Decision trees The model

A more abstract example of decision trees

Input: x = (x1, x2)

Output: f(x) determined
naturally by traversing the tree

start from the root

test at each node to decide
which child to visit next

finally the leaf gives the
prediction f(x)

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

For example, f((θ1 − 1, θ2 + 1)) = B

Complex to formally write down, but easy to represent pictorially or as
codes.
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Decision trees The model

The decision boundary

Corresponds to a classifier with boundaries:

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2
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Decision trees The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

11 / 26



Decision trees The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

11 / 26



Decision trees The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

11 / 26



Decision trees The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

11 / 26



Decision trees The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

11 / 26



Decision trees The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

11 / 26



Decision trees The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

11 / 26



Decision trees The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

11 / 26



Decision trees Learning a decision tree

Learning the parameters

So how do we learn all these parameters?

Recall typical approach is to find the parameters that minimize some loss.

This is unfortunately not feasible for trees

suppose there are Z nodes, there are roughly #featuresZ different
ways to decide “which feature to test on each node”, which is a lot.

enumerating all these configurations to find the one that minimizes
some loss is too computationally expensive.

Instead, we turn to some greedy top-down approach.
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Decision trees Learning a decision tree

A running example [Russell & Norvig, AIMA]

predict whether a customer will wait for a table at a restaurant

12 training examples

10 features (all discrete)
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Decision trees Learning a decision tree

First step: how to build the root?

I.e., which feature should we test at the root? Examples:

Which split is better?

intuitively “patrons” is a better feature since it leads to “more pure”
or “more certain” children

how to quantify this intuition?
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Decision trees Learning a decision tree

Measure of uncertainty of a node

It should be a function of the distribution of classes

e.g. a node with 2 positive and 4
negative examples can be
summarized by a distribution P
with P (Y = +1) = 1/3 and
P (Y = −1) = 2/3

One classic uncertainty measure of a distribution is its (Shannon) entropy:

H(Y ) = −
C∑

k=1

P (Y = k) logP (Y = k)
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Decision trees Learning a decision tree

Properties of entropy

H(Y ) = −
C∑

k=1

P (Y = k) logP (Y = k)

the base of log can be 2, e or 10

always non-negative

it’s the smallest codeword length to encode symbols drawn from P

maximized if P is uniform (max = lnC): most uncertain case

minimized if P focuses on one class (min = 0): most certain case

e.g. P = (1, 0, . . . , 0)

0 log 0 is defined naturally as limz→0+ z log z = 0
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Decision trees Learning a decision tree

Examples of computing entropy

With base e and 4 classes:
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Decision trees Learning a decision tree

Another example

Entropy in each child if root tests on “patrons”

So how good is choosing “patrons” overall?
Very naturally, we take the weighted average of entropy:

2

12
× 0 +

4

12
× 0 +

6

12
× 0.9 = 0.45

18 / 26
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Decision trees Learning a decision tree

Measure of uncertainty of a split

Suppose we split based on a discrete feature A, the uncertainty can be
measured by the conditional entropy:

H(Y | A)

=
∑
a

P (A = a)H(Y | A = a)

=
∑
a

P (A = a)

− C∑
Yk=1

P (Yk | A = a) logP (Yk | A = a)


=

∑
a

“fraction of example at node A = a”× “entropy at node A = a”

Pick the feature that leads to the smallest conditional entropy.

19 / 26
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Decision trees Learning a decision tree

Deciding the root

The conditional entropy is 2
12 × 1 + 2

12 × 1 + 4
12 × 1 + 4

12 × 1 = 1 > 0.45

So splitting with “patrons” is better than splitting with “type”.

In fact by similar calculation “patrons” is the best split among all features.

We are now done with building the root (this is also called a stump).
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Decision trees Learning a decision tree

Repeat recursively

Split each child in the same way.

but no need to split children “none”
and “some”: they are pure already
and become leaves

for “full”, repeat, focusing on those
6 examples:
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Decision trees Learning a decision tree

Again, very easy to interpret.

22 / 26



Decision trees Learning a decision tree

Putting it together

DecisionTreeLearning(Examples, Features)

if Examples have the same class, return a leaf with this class

else if Features is empty, return a leaf with the majority class

else if Examples is empty, return a leaf with majority class of parent

else

find the best feature A to split (e.g. based on conditional entropy)

Tree ← a root with test on A

For each value a of A:

Child ← DecisionTreeLearning(Examples with A = a, Features\{A})
add Child to Tree as a new branch

return Tree
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Decision trees Learning a decision tree

Variants

Popular decision tree algorithms (e.g. C4.5, CART, etc) are all based on
this framework.

Variants:

replace entropy by Gini impurity:

G(P ) =
C∑

k=1

P (Y = k)(1− P (Y = k))

meaning: how often a randomly chosen example would be incorrectly
classified if we predict according to another randomly picked example

if a feature is continuous, we need to find a threshold that leads to
minimum conditional entropy or Gini impurity.
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Variants

1

Image Credit: https://medium.com/@jason9389/gini-impurity-and-entropy-16116e754b27
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Decision trees Learning a decision tree

Regularization

If the dataset has no contradiction (i.e. same x but different y), the
training error of a tree is always zero, which might indicate overfitting.

Pruning is a typical way to prevent overfitting for a tree:

restrict the depth or #nodes

other more principled approaches

all make use of a validation set
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