
CSCI567 Machine Learning (Spring 2021)

Sirisha Rambhatla

University of Southern California

March 10, 2021

1 / 25



Outline

1 Logistics

2 Review of last lecture

3 Boosting

2 / 25



Logistics

Outline

1 Logistics

2 Review of last lecture

3 Boosting

3 / 25



Logistics

Logistics

Checkpoint 1 for project is due today. We will be tracking Kaggle
submissions starting March 11, 2021.

Quiz 1 has been graded. The mean, median, and standard deviation
were 60.3, 62.3 and 17.4, respectively.

March 12, 2021 is a Wellness Day, there will be no class.

4 / 25



Review of last lecture

Outline

1 Logistics

2 Review of last lecture

3 Boosting

5 / 25



Review of last lecture

Decision Trees

Many decisions are made based on some tree structure

Medical treatment

Fever 

𝑇 > 100 𝑇 < 100 

Treatment #1 Muscle Pain 

Treatment #2 

High 

Treatment #3 

Low 

Salary in a company

Degree 

High School College Graduate 

Work Experience Work Experience Work Experience 

< 5yr > 5yr 

$𝑿𝟏 $𝑿𝟐 

< 5yr > 5yr 

$𝑿𝟑 $𝑿𝟒 

< 5yr > 5yr 

$𝑿𝟓 $𝑿𝟔 

6 / 25



Review of last lecture

Learning Decision Trees

DecisionTreeLearning(Examples, Features)

if Examples have the same class, return a leaf with this class

else if Features is empty, return a leaf with the majority class

else if Examples is empty, return a leaf with majority class of parent

else

find the best feature A to split (e.g. based on conditional entropy)

Tree ← a root with test on A

For each value a of A:

Child ← DecisionTreeLearning(Examples with A = a, Features\{A})
add Child to Tree as a new branch

return Tree

7 / 25



Boosting

Outline

1 Logistics

2 Review of last lecture

3 Boosting
Examples
AdaBoost
Derivation of AdaBoost

8 / 25



Boosting Examples

Introduction

Boosting

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.

9 / 25



Boosting Examples

Introduction

Boosting

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.

9 / 25



Boosting Examples

Introduction

Boosting

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.

9 / 25



Boosting Examples

Introduction

Boosting

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.

9 / 25



Boosting Examples

Introduction

Boosting

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.

9 / 25



Boosting Examples

Introduction

Boosting

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.

9 / 25



Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

10 / 25



Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

10 / 25



Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

10 / 25



Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

10 / 25



Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

10 / 25



Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

10 / 25



Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

10 / 25



Boosting Examples

The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h← A(S,D)

this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by “weighted total loss”)

even if it’s not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset

11 / 25



Boosting Examples

The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h← A(S,D)

this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by “weighted total loss”)

even if it’s not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset

11 / 25



Boosting Examples

The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h← A(S,D)

this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by “weighted total loss”)

even if it’s not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset

11 / 25



Boosting Examples

The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h← A(S,D)

this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by “weighted total loss”)

even if it’s not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset

11 / 25



Boosting Examples

Boosting Algorithms

Given:

a training set S

a base algorithm A

Two things to specify a boosting algorithm:

how to reweight the examples?

how to combine all the weak classifiers?

AdaBoost is one of the most successful boosting algorithms.

12 / 25



Boosting Examples

Boosting Algorithms

Given:

a training set S

a base algorithm A

Two things to specify a boosting algorithm:

how to reweight the examples?

how to combine all the weak classifiers?

AdaBoost is one of the most successful boosting algorithms.

12 / 25



Boosting Examples

Boosting Algorithms

Given:

a training set S

a base algorithm A

Two things to specify a boosting algorithm:

how to reweight the examples?

how to combine all the weak classifiers?

AdaBoost is one of the most successful boosting algorithms.

12 / 25



Boosting AdaBoost

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

For t = 1, . . . , T

obtain a weak classifier ht ← A(S,Dt)

calculate the importance of ht as

βt =
1

2
ln

(
1− εt
εt

)
(βt > 0⇔ εt < 0.5)

where εt =
∑

n:ht(xn)6=yn Dt(n) is the weighted error of ht.

update distributions

Dt+1(n) ∝ Dt(n)e
−βtynht(xn) =

{
Dt(n)e

−βt if ht(xn) = yn

Dt(n)e
βt else

Output the final classifier H(x) = sgn
(∑T

t=1 βtht(x)
)

13 / 25



Boosting AdaBoost

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

For t = 1, . . . , T

obtain a weak classifier ht ← A(S,Dt)

calculate the importance of ht as

βt =
1

2
ln

(
1− εt
εt

)
(βt > 0⇔ εt < 0.5)

where εt =
∑

n:ht(xn)6=yn Dt(n) is the weighted error of ht.

update distributions

Dt+1(n) ∝ Dt(n)e
−βtynht(xn) =

{
Dt(n)e

−βt if ht(xn) = yn

Dt(n)e
βt else

Output the final classifier H(x) = sgn
(∑T

t=1 βtht(x)
)

13 / 25



Boosting AdaBoost

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

For t = 1, . . . , T

obtain a weak classifier ht ← A(S,Dt)

calculate the importance of ht as

βt =
1

2
ln

(
1− εt
εt

)
(βt > 0⇔ εt < 0.5)

where εt =
∑

n:ht(xn)6=yn Dt(n) is the weighted error of ht.

update distributions

Dt+1(n) ∝ Dt(n)e
−βtynht(xn) =

{
Dt(n)e

−βt if ht(xn) = yn

Dt(n)e
βt else

Output the final classifier H(x) = sgn
(∑T

t=1 βtht(x)
)

13 / 25



Boosting AdaBoost

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

For t = 1, . . . , T

obtain a weak classifier ht ← A(S,Dt)

calculate the importance of ht as

βt =
1

2
ln

(
1− εt
εt

)
(βt > 0⇔ εt < 0.5)

where εt =
∑

n:ht(xn)6=yn Dt(n) is the weighted error of ht.

update distributions

Dt+1(n) ∝ Dt(n)e
−βtynht(xn) =

{
Dt(n)e

−βt if ht(xn) = yn

Dt(n)e
βt else

Output the final classifier H(x) = sgn
(∑T

t=1 βtht(x)
)

13 / 25



Boosting AdaBoost

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

For t = 1, . . . , T

obtain a weak classifier ht ← A(S,Dt)

calculate the importance of ht as

βt =
1

2
ln

(
1− εt
εt

)
(βt > 0⇔ εt < 0.5)

where εt =
∑

n:ht(xn)6=yn Dt(n) is the weighted error of ht.

update distributions

Dt+1(n) ∝ Dt(n)e
−βtynht(xn) =

{
Dt(n)e

−βt if ht(xn) = yn

Dt(n)e
βt else

Output the final classifier H(x) = sgn
(∑T

t=1 βtht(x)
)

13 / 25



Boosting AdaBoost

Example

10 data points in R2

The size of + or - indicates the
weight, which starts from uniform D1

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

Base algorithm is decision stump:

Observe that no stump can predict very accurately for this dataset

14 / 25



Boosting AdaBoost

Example

10 data points in R2

The size of + or - indicates the
weight, which starts from uniform D1

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

Base algorithm is decision stump:

Observe that no stump can predict very accurately for this dataset

14 / 25



Boosting AdaBoost

Example

10 data points in R2

The size of + or - indicates the
weight, which starts from uniform D1

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

Base algorithm is decision stump:

Observe that no stump can predict very accurately for this dataset

14 / 25



Boosting AdaBoost

Round 1: t = 1

Round 1Round 1Round 1Round 1Round 1

h1

!

"1
1

=0.30
=0.42

2D

3 misclassified (circled): ε1 = 0.3→ β1 =
1
2 ln

(
1−εt
εt

)
≈ 0.42.

D2 puts more weights on those examples

15 / 25



Boosting AdaBoost

Round 1: t = 1

Round 1Round 1Round 1Round 1Round 1

h1

!

"1
1

=0.30
=0.42

2D

3 misclassified (circled): ε1 = 0.3→ β1 =
1
2 ln

(
1−εt
εt

)
≈ 0.42.

D2 puts more weights on those examples

15 / 25



Boosting AdaBoost

Round 2: t = 2

Round 2Round 2Round 2Round 2Round 2

!

"2
2

=0.21
=0.65

h2 3D

3 misclassified (circled): ε2 = 0.21→ β2 = 0.65.

D3 puts more weights on those examples

16 / 25



Boosting AdaBoost

Round 2: t = 2

Round 2Round 2Round 2Round 2Round 2

!

"2
2

=0.21
=0.65

h2 3D

3 misclassified (circled): ε2 = 0.21→ β2 = 0.65.

D3 puts more weights on those examples

16 / 25



Boosting AdaBoost

Round 3: t = 3

Round 3Round 3Round 3Round 3Round 3

h3

!

"3
3=0.92
=0.14

again 3 misclassified (circled): ε3 = 0.14→ β3 = 0.92.

17 / 25



Boosting AdaBoost

Final classifier: combining 3 classifiers
Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

All data points are now classified correctly, even though each weak
classifier makes 3 mistakes.

18 / 25



Boosting AdaBoost

Final classifier: combining 3 classifiers
Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

All data points are now classified correctly, even though each weak
classifier makes 3 mistakes.

18 / 25



Boosting AdaBoost

Overfitting

When T is large, the model is very complicated and overfitting can happen

19 / 25



Boosting AdaBoost

Overfitting

When T is large, the model is very complicated and overfitting can happen

19 / 25



Boosting AdaBoost

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

Used to be a mystery, but by now rigorous theory has been developed to
explain this phenomenon.

20 / 25



Boosting AdaBoost

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

Used to be a mystery, but by now rigorous theory has been developed to
explain this phenomenon.

20 / 25



Boosting AdaBoost

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

Used to be a mystery, but by now rigorous theory has been developed to
explain this phenomenon.

20 / 25



Boosting Derivation of AdaBoost

Why AdaBoost works?

In fact, AdaBoost also follows the general framework of minimizing some
surrogate loss.

Step 1: the model that AdaBoost considers is{
sgn (f(·))

∣∣∣ f(·) = T∑
t=1

βtht(·) for some βt ≥ 0 and ht ∈ H

}
where H is the set of models considered by the base algorithm

Step 2: the loss that AdaBoost
minimizes is the exponential loss

N∑
n=1

exp (−ynf(xn))

21 / 25



Boosting Derivation of AdaBoost

Why AdaBoost works?

In fact, AdaBoost also follows the general framework of minimizing some
surrogate loss.

Step 1: the model that AdaBoost considers is{
sgn (f(·))

∣∣∣ f(·) = T∑
t=1

βtht(·) for some βt ≥ 0 and ht ∈ H

}
where H is the set of models considered by the base algorithm

Step 2: the loss that AdaBoost
minimizes is the exponential loss

N∑
n=1

exp (−ynf(xn))

21 / 25



Boosting Derivation of AdaBoost

Why AdaBoost works?

In fact, AdaBoost also follows the general framework of minimizing some
surrogate loss.

Step 1: the model that AdaBoost considers is{
sgn (f(·))

∣∣∣ f(·) = T∑
t=1

βtht(·) for some βt ≥ 0 and ht ∈ H

}
where H is the set of models considered by the base algorithm

Step 2: the loss that AdaBoost
minimizes is the exponential loss

N∑
n=1

exp (−ynf(xn))

21 / 25



Boosting Derivation of AdaBoost

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find βt, ht one by one for t = 1, . . . , T .

Specifically, let ft =
∑t

τ=1 βτhτ . Suppose we have found ft−1, what
should ft be? Greedily, we want to find βt, ht to minimize

N∑
n=1

exp (−ynft(xn)) =
N∑
n=1

exp (−ynft−1(xn)) exp (−ynβtht(xn))

∝
N∑
n=1

Dt(n) exp (−ynβtht(xn))

where the last step is by the definition of weights

Dt(n) ∝ Dt−1(n) exp (−ynβt−1ht−1(xn)) ∝ · · · ∝ exp (−ynft−1(xn))

22 / 25



Boosting Derivation of AdaBoost

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find βt, ht one by one for t = 1, . . . , T .

Specifically, let ft =
∑t

τ=1 βτhτ . Suppose we have found ft−1, what
should ft be?

Greedily, we want to find βt, ht to minimize

N∑
n=1

exp (−ynft(xn)) =
N∑
n=1

exp (−ynft−1(xn)) exp (−ynβtht(xn))

∝
N∑
n=1

Dt(n) exp (−ynβtht(xn))

where the last step is by the definition of weights

Dt(n) ∝ Dt−1(n) exp (−ynβt−1ht−1(xn)) ∝ · · · ∝ exp (−ynft−1(xn))

22 / 25



Boosting Derivation of AdaBoost

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find βt, ht one by one for t = 1, . . . , T .

Specifically, let ft =
∑t

τ=1 βτhτ . Suppose we have found ft−1, what
should ft be? Greedily, we want to find βt, ht to minimize

N∑
n=1

exp (−ynft(xn))

=
N∑
n=1

exp (−ynft−1(xn)) exp (−ynβtht(xn))

∝
N∑
n=1

Dt(n) exp (−ynβtht(xn))

where the last step is by the definition of weights

Dt(n) ∝ Dt−1(n) exp (−ynβt−1ht−1(xn)) ∝ · · · ∝ exp (−ynft−1(xn))

22 / 25



Boosting Derivation of AdaBoost

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find βt, ht one by one for t = 1, . . . , T .

Specifically, let ft =
∑t

τ=1 βτhτ . Suppose we have found ft−1, what
should ft be? Greedily, we want to find βt, ht to minimize

N∑
n=1

exp (−ynft(xn)) =

N∑
n=1

exp (−ynft−1(xn)) exp (−ynβtht(xn))

∝
N∑
n=1

Dt(n) exp (−ynβtht(xn))

where the last step is by the definition of weights

Dt(n) ∝ Dt−1(n) exp (−ynβt−1ht−1(xn)) ∝ · · · ∝ exp (−ynft−1(xn))

22 / 25



Boosting Derivation of AdaBoost

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find βt, ht one by one for t = 1, . . . , T .

Specifically, let ft =
∑t

τ=1 βτhτ . Suppose we have found ft−1, what
should ft be? Greedily, we want to find βt, ht to minimize

N∑
n=1

exp (−ynft(xn)) =

N∑
n=1

exp (−ynft−1(xn)) exp (−ynβtht(xn))

∝
N∑
n=1

Dt(n) exp (−ynβtht(xn))

where the last step is by the definition of weights

Dt(n) ∝ Dt−1(n) exp (−ynβt−1ht−1(xn)) ∝ · · · ∝ exp (−ynft−1(xn))

22 / 25



Boosting Derivation of AdaBoost

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find βt, ht one by one for t = 1, . . . , T .

Specifically, let ft =
∑t

τ=1 βτhτ . Suppose we have found ft−1, what
should ft be? Greedily, we want to find βt, ht to minimize

N∑
n=1

exp (−ynft(xn)) =

N∑
n=1

exp (−ynft−1(xn)) exp (−ynβtht(xn))

∝
N∑
n=1

Dt(n) exp (−ynβtht(xn))

where the last step is by the definition of weights

Dt(n) ∝ Dt−1(n) exp (−ynβt−1ht−1(xn)) ∝ · · · ∝ exp (−ynft−1(xn))

22 / 25



Boosting Derivation of AdaBoost

Greedy minimization

So the goal becomes finding βt, ht ∈ H that minimize

N∑
n=1

Dt(n) exp (−ynβtht(xn))

=
∑

n:yn 6=ht(xn)

Dt(n)e
βt +

∑
n:yn=ht(xn)

Dt(n)e
−βt

= εte
βt + (1− εt)e−βt (recall εt =

∑
n:yn 6=ht(xn)

Dt(n))

= εt(e
βt − e−βt) + e−βt

It is now clear we should find ht to minimize the weighted classification
error εt, exactly what the base algorithm should do intuitively!

This greedy step is abstracted out through a base algorithm.

23 / 25



Boosting Derivation of AdaBoost

Greedy minimization

So the goal becomes finding βt, ht ∈ H that minimize

N∑
n=1

Dt(n) exp (−ynβtht(xn))

=
∑

n:yn 6=ht(xn)

Dt(n)e
βt +

∑
n:yn=ht(xn)

Dt(n)e
−βt

= εte
βt + (1− εt)e−βt (recall εt =

∑
n:yn 6=ht(xn)

Dt(n))

= εt(e
βt − e−βt) + e−βt

It is now clear we should find ht to minimize the weighted classification
error εt, exactly what the base algorithm should do intuitively!

This greedy step is abstracted out through a base algorithm.

23 / 25



Boosting Derivation of AdaBoost

Greedy minimization

So the goal becomes finding βt, ht ∈ H that minimize

N∑
n=1

Dt(n) exp (−ynβtht(xn))

=
∑

n:yn 6=ht(xn)

Dt(n)e
βt +

∑
n:yn=ht(xn)

Dt(n)e
−βt

= εte
βt + (1− εt)e−βt (recall εt =

∑
n:yn 6=ht(xn)

Dt(n))

= εt(e
βt − e−βt) + e−βt

It is now clear we should find ht to minimize the weighted classification
error εt, exactly what the base algorithm should do intuitively!

This greedy step is abstracted out through a base algorithm.

23 / 25



Boosting Derivation of AdaBoost

Greedy minimization

So the goal becomes finding βt, ht ∈ H that minimize

N∑
n=1

Dt(n) exp (−ynβtht(xn))

=
∑

n:yn 6=ht(xn)

Dt(n)e
βt +

∑
n:yn=ht(xn)

Dt(n)e
−βt

= εte
βt + (1− εt)e−βt (recall εt =

∑
n:yn 6=ht(xn)

Dt(n))

= εt(e
βt − e−βt) + e−βt

It is now clear we should find ht to minimize the weighted classification
error εt, exactly what the base algorithm should do intuitively!

This greedy step is abstracted out through a base algorithm.

23 / 25



Boosting Derivation of AdaBoost

Greedy minimization

So the goal becomes finding βt, ht ∈ H that minimize

N∑
n=1

Dt(n) exp (−ynβtht(xn))

=
∑

n:yn 6=ht(xn)

Dt(n)e
βt +

∑
n:yn=ht(xn)

Dt(n)e
−βt

= εte
βt + (1− εt)e−βt (recall εt =

∑
n:yn 6=ht(xn)

Dt(n))

= εt(e
βt − e−βt) + e−βt

It is now clear we should find ht to minimize the weighted classification
error εt, exactly what the base algorithm should do intuitively!

This greedy step is abstracted out through a base algorithm.

23 / 25



Boosting Derivation of AdaBoost

Greedy minimization

So the goal becomes finding βt, ht ∈ H that minimize

N∑
n=1

Dt(n) exp (−ynβtht(xn))

=
∑

n:yn 6=ht(xn)

Dt(n)e
βt +

∑
n:yn=ht(xn)

Dt(n)e
−βt

= εte
βt + (1− εt)e−βt (recall εt =

∑
n:yn 6=ht(xn)

Dt(n))

= εt(e
βt − e−βt) + e−βt

It is now clear we should find ht to minimize the weighted classification
error εt, exactly what the base algorithm should do intuitively!

This greedy step is abstracted out through a base algorithm.

23 / 25



Boosting Derivation of AdaBoost

Greedy minimization

When ht (and thus εt) is fixed, we then find βt to minimize

εt(e
βt − e−βt) + e−βt

This gives the following (verify!):

βt =
1

2
ln

(
1− εt
εt

)

Keep doing this greedy minimization gives the AdaBoost algorithm.

24 / 25



Boosting Derivation of AdaBoost

Greedy minimization

When ht (and thus εt) is fixed, we then find βt to minimize

εt(e
βt − e−βt) + e−βt

This gives the following (verify!):

βt =
1

2
ln

(
1− εt
εt

)

Keep doing this greedy minimization gives the AdaBoost algorithm.

24 / 25



Boosting Derivation of AdaBoost

Greedy minimization

When ht (and thus εt) is fixed, we then find βt to minimize

εt(e
βt − e−βt) + e−βt

This gives the following (verify!):

βt =
1

2
ln

(
1− εt
εt

)

Keep doing this greedy minimization gives the AdaBoost algorithm.

24 / 25



Boosting Derivation of AdaBoost

Summary for boosting

Key idea of boosting is to combine weak predictors into a strong one.

There are many boosting algorithms; AdaBoost is the most classic one.

AdaBoost is greedily minimizing the exponential loss.

AdaBoost tends to not overfit.

25 / 25



Boosting Derivation of AdaBoost

Summary for boosting

Key idea of boosting is to combine weak predictors into a strong one.

There are many boosting algorithms; AdaBoost is the most classic one.

AdaBoost is greedily minimizing the exponential loss.

AdaBoost tends to not overfit.

25 / 25



Boosting Derivation of AdaBoost

Summary for boosting

Key idea of boosting is to combine weak predictors into a strong one.

There are many boosting algorithms; AdaBoost is the most classic one.

AdaBoost is greedily minimizing the exponential loss.

AdaBoost tends to not overfit.

25 / 25



Boosting Derivation of AdaBoost

Summary for boosting

Key idea of boosting is to combine weak predictors into a strong one.

There are many boosting algorithms; AdaBoost is the most classic one.

AdaBoost is greedily minimizing the exponential loss.

AdaBoost tends to not overfit.

25 / 25


	Logistics
	Review of last lecture
	Boosting

