CSCI567 Machine Learning (Spring 2021)

Sirisha Rambhatla

University of Southern California

March 10, 2021

Outline

© Logistics

© Review of last lecture

© Boosting

Outline

O Logistics

Logistics

@ Checkpoint 1 for project is due today. We will be tracking Kaggle
submissions starting March 11, 2021.

@ Quiz 1 has been graded. The mean, median, and standard deviation
were 60.3, 62.3 and 17.4, respectively.

@ March 12, 2021 is a Wellness Day, there will be no class.

4/25

Outline

© Review of last lecture

Review of last lecture

Decision Trees
Many decisions are made based on some tree structure

Medical treatment Salary in a company

Fever

Degree

T>/100 T°< 100

Treatment #1 Muscle Pain
Work i Work i Work
igh Lew
<syr Nsyr <gyr Soyr <gyr Soyr
Treatment #2 Treatment #3

$Xq $X; $X3 $X4 $Xs5 $X6

Learning Decision Trees

DecisionTreeLearning(Examples, Features)

o if Examples have the same class, return a leaf with this class

@ else if Features is empty, return a leaf with the majority class

o else if Examples is empty, return a leaf with majority class of parent

@ else

find the best feature A to split (e.g. based on conditional entropy)
Tree < a root with test on A

For each value a of A:

Child + DecisionTreeLearning(Examples with A = a, Features\{A})
add Child to Tree as a new branch

@ return Tree

7/25

Outline

© Boosting
@ Examples

@ AdaBoost
@ Derivation of AdaBoost

Introduction

Boosting

@ is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

Introduction

Boosting

@ is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

@ main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

9/25

Introduction

Boosting

@ is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

@ main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

@ works very well in practice (especially in combination with trees)

9/25

Introduction

Boosting

@ is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

@ main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

@ works very well in practice (especially in combination with trees)

@ often is resistant to overfitting

9/25

Introduction

Boosting

@ is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

@ main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

@ works very well in practice (especially in combination with trees)
@ often is resistant to overfitting

@ has strong theoretical guarantees

9/25

Introduction

Boosting

@ is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

@ main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

@ works very well in practice (especially in combination with trees)
@ often is resistant to overfitting

@ has strong theoretical guarantees

We again focus on binary classification.

9/25

A simple example

Email spam detection:

A simple example

Email spam detection:
@ given a training set like:

o (“Want to make money fast? ...”, spam)
o (“Viterbi Research Gist ...", not spam)

A simple example

Email spam detection:
@ given a training set like:

o (“Want to make money fast? ...", spam)
o (“Viterbi Research Gist ...", not spam)

o first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e e.g. contains the word “money” = spam

10 / 25

A simple example

Email spam detection:
@ given a training set like:

o (“Want to make money fast? ...", spam)
o (“Viterbi Research Gist ...", not spam)

o first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e e.g. contains the word “money” = spam

@ reweight the examples so that “difficult” ones get more attention
e e.g. spam that doesn't contain the word “money”

10 / 25

sl
A simple example

Email spam detection:
@ given a training set like:

o (“Want to make money fast? ...", spam)
o (“Viterbi Research Gist ...", not spam)

o first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e e.g. contains the word “money” = spam

@ reweight the examples so that “difficult” ones get more attention
e e.g. spam that doesn't contain the word “money”

@ obtain another classifier by applying the same base algorithm:
e e.g. empty “to address’ =- spam

10 / 25

A simple example

Email spam detection:
@ given a training set like:

o (“Want to make money fast? ...", spam)
o (“Viterbi Research Gist ...", not spam)

o first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e e.g. contains the word “money” = spam

@ reweight the examples so that “difficult” ones get more attention
e e.g. spam that doesn't contain the word “money”

@ obtain another classifier by applying the same base algorithm:
e e.g. empty “to address’ =- spam

@ repeat ...

10 / 25

A simple example

Email spam detection:
@ given a training set like:

o (“Want to make money fast? ...", spam)
o (“Viterbi Research Gist ...", not spam)

o first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e e.g. contains the word “money” = spam

@ reweight the examples so that “difficult” ones get more attention
e e.g. spam that doesn't contain the word “money”

@ obtain another classifier by applying the same base algorithm:
e e.g. empty “to address’ =- spam

@ repeat ...

e final classifier is the (weighted) majority vote of all weak classifiers

10 / 25

The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h < A(S, D)

sl
The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h + A(S, D)

@ this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

11/ 25

Examples
The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h + A(S, D)

@ this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

@ many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by "weighted total loss™)

11/ 25

Examples
The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h + A(S, D)

@ this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

@ many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by "weighted total loss™)

@ even if it's not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset

11/ 25

Boosting Algorithms

Given:
@ a training set S

@ a base algorithm A

sl
Boosting Algorithms

Given:
@ a training set S

@ a base algorithm A

Two things to specify a boosting algorithm:
@ how to reweight the examples?

@ how to combine all the weak classifiers?

12 /25

sl
Boosting Algorithms

Given:
@ a training set S

@ a base algorithm A

Two things to specify a boosting algorithm:
@ how to reweight the examples?

@ how to combine all the weak classifiers?

AdaBoost is one of the most successful boosting algorithms.

12 /25

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

Fort=1,...,T

@ obtain a weak classifier hy < A(S, Dy)

S
The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize Dy to be uniform

Fort=1,...,T
@ obtain a weak classifier hy < A(S, Dy)

@ calculate the importance of h; as

/Bt:;hl<1_€t> (6t>0<:>6t<0.5)

€t

where €, = 3, 1, ()24, Dt(n) is the weighted error of hy.

13 / 25

S
The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize Dy to be uniform

Fort=1,...,T
@ obtain a weak classifier hy < A(S, Dy)

@ calculate the importance of h; as

/Bt:;hl<1_€t> (6t>0<:>6t<0.5)

€t
where €, = 3, 1, ()24, Dt(n) is the weighted error of hy.
@ update distributions

Dt(n)e*'@lt if hi(zn) = yn

D n) x Di¢(n e_ﬁiynht(mn) —
t+1(n) ¢(n) Dimebt else

13 / 25

S
The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize Dy to be uniform

Fort=1,...,T
@ obtain a weak classifier hy < A(S, Dy)

@ calculate the importance of h; as

/Bt:;hl<1_€t) (ﬁt>0<:>6t<0.5)

€t
where €, = 3, 1, ()24, Dt(n) is the weighted error of hy.
@ update distributions

Dt(n)e*'@’5 if hi(zn) = yn

D n) x Di¢(n e_ﬁiynht(mn) —
t+1(n) ¢(n) Dimebt else

Output the final classifier H(x) = sgn (Zthl ﬁtht(w))

13 / 25

Example
Dy
+
10 data points in R? + o+
The size of + or - indicates the + -
weight, which starts from uniform D, n B

Example
D,

+
10 data points in R2 + o+
The size of 4 or - indicates the + -
weight, which starts from uniform D, n B

Base algorithm is decision stump:
x>0 Xz, > 192

14 / 25

Example
D,

+
10 data points in R2 + o+
The size of 4 or - indicates the + -
weight, which starts from uniform D, n B

Base algorithm is decision stump:
x>0 Xz, > 192

Observe that no stump can predict very accurately for this dataset

14 / 25

Round 1: t =1

o 3 misclassified (circled): ¢, =0.3 — 8y = 1In (ﬂ) ~ 0.42.

€¢

Round 1: t =1

o 3 misclassified (circled): ¢, =0.3 — 8y = 1In (ﬂ) ~ 0.42.

€¢

@ Dy puts more weights on those examples

Round 2: t = 2

e 3 misclassified (circled): €3 = 0.21 — 2 = 0.65.

Round 2: t = 2

e 3 misclassified (circled): €3 = 0.21 — 2 = 0.65.

@ D3 puts more weights on those examples

Round 3: t =3

@ again 3 misclassified (circled): €3 = 0.14 — 3 = 0.92.

Boosting

Final classifier: combining 3 classifiers

H . =sign | 0.42 +0.65) +0.92
final

Boosting

Final classifier: combining 3 classifiers

H . =sign | 0.42 +0.65) +0.92
final

All data points are now classified correctly, even though each weak
classifier makes 3 mistakes.

Overfitting

When T is large, the model is very complicated and overfitting can happen

S
Overfitting

When T is large, the model is very complicated and overfitting can happen

(boosting “stumps” on

10| train | heart-disease dataset)
5 L
0 L |
1 10 100 1000
rounds

19 / 25

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

Boosting

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

20:
155/\
5
£10: (,bOOSt,',ng C4.5 on
5 test letter” dataset)
0 ~ _train
10 100 1000
of rounds (7)

e test error does not increase, even after 1000 rounds
o (total size > 2,000,000 nodes)
e test error continues to drop even after training error is zero!
rounds
5 | 100 | 1000
train error | 0.0 | 0.0 0.0
test error | 8.4 | 3.3 3.1

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

20:
e
5
510 (boosting C4.5 on
. test “letter” dataset)
0: \« train
10 100 1000
of rounds (7)

e test error does not increase, even after 1000 rounds
o (total size > 2,000,000 nodes)
o test error continues to drop even after training error is zero!
rounds
5 | 100 | 1000
train error | 0.0 | 0.0 0.0
test error | 8.4 | 3.3 3.1

Used to be a mystery, but by now rigorous theory has been developed to

explain this phenomenon.
20 / 25

Why AdaBoost works?

In fact, AdaBoost also follows the general framework of minimizing some
surrogate loss.

P
Why AdaBoost works?

In fact, AdaBoost also follows the general framework of minimizing some
surrogate loss.

Step 1: the model that AdaBoost considers is

T
{sgn (f(+) ’ fG) = Zﬁtht(-) for some 3; > 0 and h; € 7—[}
t=1

where 7 is the set of models considered by the base algorithm

21 /25

P
Why AdaBoost works?

In fact, AdaBoost also follows the general framework of minimizing some
surrogate loss.

Step 1: the model that AdaBoost considers is

T
{sgn (f(+) ’ fG) = Zﬁtht(-) for some 3; > 0 and h; € 7—[}
t=1

where 7 is the set of models considered by the base algorithm

Step 2: the loss that AdaBoost N\
e . . \ 15
minimizes is the exponential loss

) AN
>~ exp (~ynf(@n)) K

n=1 . .
2 l 0 1

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find f3;, h; one by one fort =1,... 7.

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find 3, hy one by one fort =1,...,T.

Specifically, let f; = 23:1 Brh,. Suppose we have found f;_1, what
should f; be?

22 /25

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find 3, hy one by one fort =1,...,T.

Specifically, let f; = 23:1 Brhr. Suppose we have found f;_1, what
should f; be? Greedily, we want to find 3¢, hy to minimize

N
> exp (—ynfi(zn))
n=1

22 /25

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find 3, hy one by one fort =1,...,T.

Specifically, let f; = 23:1 Brhr. Suppose we have found f;_1, what
should f; be? Greedily, we want to find 3¢, hy to minimize

N N
Z exp (—ynfe(xn)) = Z exp (—Ynfi—1(2n)) exp (—ynBihi(xn))

n=1

22 /25

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find 3, hy one by one fort =1,...,T.

Specifically, let f; = 23:1 Brhr. Suppose we have found f;_1, what
should f; be? Greedily, we want to find 3¢, hy to minimize

N N
Z exp (—ynfe(xn)) = Z exp (—Ynfi—1(2n)) exp (—ynBihi(xn))

n=1

O(ZDt n) exp (—ynBehi(xn))

22 /25

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find 3, hy one by one fort =1,...,T.

Specifically, let f; = 23:1 Brhr. Suppose we have found f;_1, what
should f; b

e? Greedily, we want to find f;, hy to minimize

N N
Z exp (—ynfe(xn)) = Z exp (—Ynfi—1(2n)) exp (—ynBihi(xn))

n=1

o8 Z Dt exp ynﬁtht(xn))
where the last step is by the definition of weights

Di(n) o< Di—1(n) exp (=ynfi—1hi—1(2n)) o< - - - o< exp (—yn fi—1(xn))

22 /25

Greedy minimization

So the goal becomes finding 3y, hy € H that minimize

ZDt n) exp (—YnBihi(xn))

Greedy minimization

So the goal becomes finding 3y, hy € H that minimize

ZDt n) exp (—YnBihi(xn))

= Y. D)+ DY Dyn)e

n:yn7#he(en) niyn=h¢(xn)

Greedy minimization

So the goal becomes finding (¢, hy € H that minimize

N

Z Di(n) exp (—ynBihi(zr))

n=

1
= Z Di(n)ePt + Z Dy(n)e Pt

n:ynFht (n) n:yn="h¢(xn)

= el + (1 —¢)e ™ (recall € =3, shi(an) Dt(1))

23 /25

Greedy minimization

So the goal becomes finding (¢, hy € H that minimize

N

Z Di(n) exp (—ynBihi(zr))

n=

1
= Z Di(n)ePt + Z Dy(n)e Pt

n:ynFht (n) n:yn="h¢(xn)

= el + (1 —¢)e ™ (recall € =3, shi(an) Dt(1))
— Ct(eﬁt _ e*ﬁt) + e~ Bt

23 /25

Greedy minimization

So the goal becomes finding (¢, hy € H that minimize

N

Z Di(n) exp (—ynBihi(zr))

n=

1
= Z Di(n)ePt + Z Dy(n)e Pt

n:ynFht (n) n:yn="h¢(xn)

= el + (1 —¢)e ™ (recall € =3, shi(an) Dt(1))
— Ct(eﬁt _ e*ﬁt) + e~ Bt

It is now clear we should find h; to minimize the weighted classification
error €, exactly what the base algorithm should do intuitively!

23 /25

Greedy minimization

So the goal becomes finding (¢, hy € H that minimize

N

Z Di(n) exp (—ynBihi(zr))

n=

1
= Z Di(n)ePt + Z Dy(n)e Pt

n:ynFht (n) n:yn="h¢(xn)

= el + (1 —¢)e ™ (recall € =3, shi(an) Dt(1))
— Ct(eﬁt _ e*ﬁt) + e~ Bt

It is now clear we should find h; to minimize the weighted classification
error €, exactly what the base algorithm should do intuitively!

This greedy step is abstracted out through a base algorithm.

23 /25

Greedy minimization

When h; (and thus) is fixed, we then find ; to minimize

Et(eﬁt _ e—/@t) + e Bt

Greedy minimization

When h; (and thus) is fixed, we then find ; to minimize

Et(eﬁt _ e—/@t) + e Bt

This gives the following (verify!):

1 1_61‘,
=1
Bt 211(¢)

Greedy minimization

When h; (and thus ¢;) is fixed, we then find 3; to minimize

et(eﬁt _ e—ﬁt) + e Bt

This gives the following (verify!):
1 1-— €
=1
B 9 n < o >

Keep doing this greedy minimization gives the AdaBoost algorithm.

24 /25

Summary for boosting

Key idea of boosting is to combine weak predictors into a strong one.

Summary for boosting

Key idea of boosting is to combine weak predictors into a strong one.

There are many boosting algorithms; AdaBoost is the most classic one.

25 /25

Summary for boosting

Key idea of boosting is to combine weak predictors into a strong one.

There are many boosting algorithms; AdaBoost is the most classic one.

AdaBoost is greedily minimizing the exponential loss.

25 /25

Summary for boosting

Key idea of boosting is to combine weak predictors into a strong one.
There are many boosting algorithms; AdaBoost is the most classic one.
AdaBoost is greedily minimizing the exponential loss.

AdaBoost tends to not overfit.

25 /25

	Logistics
	Review of last lecture
	Boosting

