CSCI567 Machine Learning (Spring 2021)

Sirisha Rambhatla

University of Southern California

March 10, 2021

2 Review of last lecture

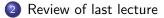
Outline

2 Review of last lecture

Logistics

- Checkpoint 1 for project is due today. We will be tracking Kaggle submissions starting March 11, 2021.
- Quiz 1 has been graded. The mean, median, and standard deviation were 60.3, 62.3 and 17.4, respectively.
- March 12, 2021 is a Wellness Day, there will be no class.

Outline

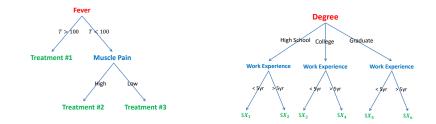


Decision Trees

Many decisions are made based on some tree structure

Medical treatment

Salary in a company



Learning Decision Trees

DecisionTreeLearning(Examples, Features)

- if Examples have the same class, return a leaf with this class
- else if Features is empty, return a leaf with the majority class
- else if Examples is empty, return a leaf with majority class of parent

else

find the best feature A to split (e.g. based on conditional entropy)

Tree \leftarrow a root with test on A

For each value a of A:

Child \leftarrow **DecisionTreeLearning**(Examples with A = a, Features $\setminus \{A\}$) add **Child** to **Tree** as a new branch

• return Tree

Outline

2 Review of last lecture

- Examples
- AdaBoost
- Derivation of AdaBoost

Examples

Introduction

Boosting

• is a meta-algorithm, which takes a base algorithm (classification, regression, ranking, etc) as input and boosts its accuracy

- is a meta-algorithm, which takes a base algorithm (classification, regression, ranking, etc) as input and boosts its accuracy
- main idea: combine weak "rules of thumb" (e.g. 51% accuracy) to form a highly accurate predictor (e.g. 99% accuracy)

- is a meta-algorithm, which takes a base algorithm (classification, regression, ranking, etc) as input and boosts its accuracy
- main idea: combine weak "rules of thumb" (e.g. 51% accuracy) to form a highly accurate predictor (e.g. 99% accuracy)
- works very well in practice (especially in combination with trees)

- is a meta-algorithm, which takes a base algorithm (classification, regression, ranking, etc) as input and boosts its accuracy
- main idea: combine weak "rules of thumb" (e.g. 51% accuracy) to form a highly accurate predictor (e.g. 99% accuracy)
- works very well in practice (especially in combination with trees)
- often is resistant to overfitting

- is a meta-algorithm, which takes a base algorithm (classification, regression, ranking, etc) as input and boosts its accuracy
- main idea: combine weak "rules of thumb" (e.g. 51% accuracy) to form a highly accurate predictor (e.g. 99% accuracy)
- works very well in practice (especially in combination with trees)
- often is resistant to overfitting
- has strong theoretical guarantees

Boosting

- is a meta-algorithm, which takes a base algorithm (classification, regression, ranking, etc) as input and boosts its accuracy
- main idea: combine weak "rules of thumb" (e.g. 51% accuracy) to form a highly accurate predictor (e.g. 99% accuracy)
- works very well in practice (especially in combination with trees)
- often is resistant to overfitting
- has strong theoretical guarantees

We again focus on binary classification.

- given a training set like:
 - ("Want to make money fast? ...", spam)
 - ("Viterbi Research Gist ...", not spam)

- given a training set like:
 - ("Want to make money fast? ...", spam)
 - ("Viterbi Research Gist ...", not spam)
- first obtain a classifier by applying a base algorithm, which can be a rather simple/weak one, like decision stumps:
 - $\bullet\,$ e.g. contains the word "money" $\Rightarrow\,$ spam

- given a training set like:
 - ("Want to make money fast? ...", spam)
 - ("Viterbi Research Gist ...", not spam)
- first obtain a classifier by applying a base algorithm, which can be a rather simple/weak one, like decision stumps:
 - $\bullet\,$ e.g. contains the word "money" \Rightarrow spam
- reweight the examples so that "difficult" ones get more attention
 - e.g. spam that doesn't contain the word "money"

- given a training set like:
 - ("Want to make money fast? ...", spam)
 - ("Viterbi Research Gist ...", not spam)
- first obtain a classifier by applying a base algorithm, which can be a rather simple/weak one, like decision stumps:
 - $\bullet\,$ e.g. contains the word "money" \Rightarrow spam
- reweight the examples so that "difficult" ones get more attention
 - e.g. spam that doesn't contain the word "money"
- obtain another classifier by applying the same base algorithm:
 - $\bullet\,$ e.g. empty "to address" $\Rightarrow\,$ spam

- given a training set like:
 - ("Want to make money fast? ...", spam)
 - ("Viterbi Research Gist ...", not spam)
- first obtain a classifier by applying a base algorithm, which can be a rather simple/weak one, like decision stumps:
 - $\bullet\,$ e.g. contains the word "money" \Rightarrow spam
- reweight the examples so that "difficult" ones get more attention
 - e.g. spam that doesn't contain the word "money"
- obtain another classifier by applying the same base algorithm:
 - $\bullet\,$ e.g. empty "to address" $\Rightarrow\,$ spam
- repeat ...

- given a training set like:
 - ("Want to make money fast? ...", spam)
 - ("Viterbi Research Gist ...", not spam)
- first obtain a classifier by applying a base algorithm, which can be a rather simple/weak one, like decision stumps:
 - $\bullet\,$ e.g. contains the word "money" \Rightarrow spam
- reweight the examples so that "difficult" ones get more attention
 - e.g. spam that doesn't contain the word "money"
- obtain another classifier by applying the same base algorithm:
 - $\bullet\,$ e.g. empty "to address" $\Rightarrow\,$ spam
- repeat ...
- final classifier is the (weighted) majority vote of all weak classifiers

A base algorithm \mathcal{A} (also called weak learning algorithm/oracle) takes a training set S weighted by D as input, and outputs classifier $h \leftarrow \mathcal{A}(S, D)$

- A base algorithm \mathcal{A} (also called weak learning algorithm/oracle) takes a training set S weighted by D as input, and outputs classifier $h \leftarrow \mathcal{A}(S, D)$
 - this can be any off-the-shelf classification algorithm (e.g. decision trees, logistic regression, neural nets, etc)

- A base algorithm \mathcal{A} (also called weak learning algorithm/oracle) takes a training set S weighted by D as input, and outputs classifier $h \leftarrow \mathcal{A}(S, D)$
 - this can be any off-the-shelf classification algorithm (e.g. decision trees, logistic regression, neural nets, etc)
 - many algorithms can deal with a weighted training set (e.g. for algorithm that minimizes some loss, we can simply replace "total loss" by "weighted total loss")

- A base algorithm \mathcal{A} (also called weak learning algorithm/oracle) takes a training set S weighted by D as input, and outputs classifier $h \leftarrow \mathcal{A}(S, D)$
 - this can be any off-the-shelf classification algorithm (e.g. decision trees, logistic regression, neural nets, etc)
 - many algorithms can deal with a weighted training set (e.g. for algorithm that minimizes some loss, we can simply replace "total loss" by "weighted total loss")
 - even if it's not obvious how to deal with weight directly, we can always resample according to *D* to create a new unweighted dataset

Boosting Algorithms

Given:

- \bullet a training set S
- \bullet a base algorithm ${\cal A}$

Boosting Algorithms

Given:

- ${\ensuremath{\, \bullet }}$ a training set S
- \bullet a base algorithm ${\cal A}$

Two things to specify a boosting algorithm:

- how to reweight the examples?
- how to **combine** all the weak classifiers?

Boosting Algorithms

Given:

- a training set S
- \bullet a base algorithm ${\cal A}$

Two things to specify a boosting algorithm:

- how to reweight the examples?
- how to **combine** all the weak classifiers?

AdaBoost is one of the most successful boosting algorithms.

The AdaBoost Algorithm

Given a training set S and a base algorithm \mathcal{A} , initialize D_1 to be uniform

The AdaBoost Algorithm

Given a training set S and a base algorithm \mathcal{A} , initialize D_1 to be uniform

For $t = 1, \ldots, T$

• obtain a weak classifier $h_t \leftarrow \mathcal{A}(S, D_t)$

The AdaBoost Algorithm

Given a training set S and a base algorithm \mathcal{A} , initialize D_1 to be uniform

For t = 1, ..., T

- obtain a weak classifier $h_t \leftarrow \mathcal{A}(S, D_t)$
- calculate the importance of h_t as

$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \qquad (\beta_t > 0 \Leftrightarrow \epsilon_t < 0.5)$$

where $\epsilon_t = \sum_{n:h_t(\boldsymbol{x}_n) \neq y_n} D_t(n)$ is the weighted error of h_t .

The AdaBoost Algorithm

Given a training set S and a base algorithm \mathcal{A} , initialize D_1 to be uniform

For t = 1, ..., T

- obtain a weak classifier $h_t \leftarrow \mathcal{A}(S, D_t)$
- calculate the importance of h_t as

$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \qquad \qquad (\beta_t > 0 \Leftrightarrow \epsilon_t < 0.5)$$

where $\epsilon_t = \sum_{n:h_t(\boldsymbol{x}_n) \neq y_n} D_t(n)$ is the weighted error of h_t .

update distributions

$$D_{t+1}(n) \propto D_t(n)e^{-\beta_t y_n h_t(\boldsymbol{x}_n)} = \begin{cases} D_t(n)e^{-\beta_t} & \text{if } h_t(x_n) = y_n \\ D_t(n)e^{\beta_t} & \text{else} \end{cases}$$

The AdaBoost Algorithm

Given a training set S and a base algorithm \mathcal{A} , initialize D_1 to be uniform

For t = 1, ..., T

- obtain a weak classifier $h_t \leftarrow \mathcal{A}(S, D_t)$
- calculate the importance of h_t as

$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \qquad \qquad (\beta_t > 0 \Leftrightarrow \epsilon_t < 0.5)$$

where $\epsilon_t = \sum_{n:h_t(\boldsymbol{x}_n) \neq y_n} D_t(n)$ is the weighted error of h_t .

update distributions

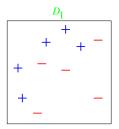
$$D_{t+1}(n) \propto D_t(n) e^{-\beta_t y_n h_t(\boldsymbol{x}_n)} = \begin{cases} D_t(n) e^{-\beta_t} & \text{if } h_t(x_n) = y_n \\ D_t(n) e^{\beta_t} & \text{else} \end{cases}$$

Output the final classifier $H(\boldsymbol{x}) = \operatorname{sgn}\left(\sum_{t=1}^{T} \beta_t h_t(\boldsymbol{x})\right)$

Example

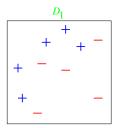
10 data points in \mathbb{R}^2

The size of + or - indicates the weight, which starts from uniform D_1

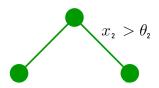


Example

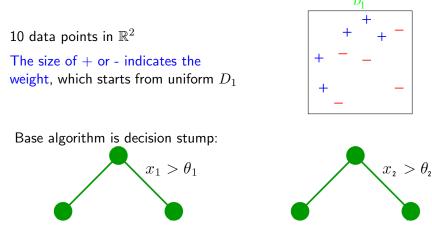
10 data points in \mathbb{R}^2 The size of + or - indicates the weight, which starts from uniform D_1



Base algorithm is decision stump: $x_1 > \theta_1$

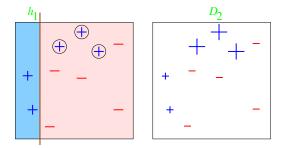


Example



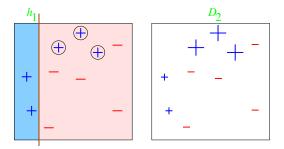
Observe that no stump can predict very accurately for this dataset

Round 1: t = 1



• 3 misclassified (circled): $\epsilon_1 = 0.3 \rightarrow \beta_1 = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right) \approx 0.42.$

Round 1: t = 1

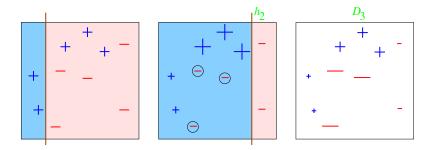


• 3 misclassified (circled): $\epsilon_1 = 0.3 \rightarrow \beta_1 = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right) \approx 0.42.$

• D_2 puts more weights on those examples

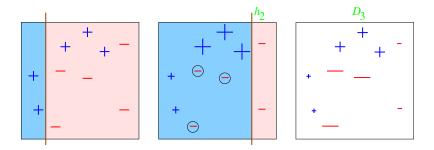
AdaBoost

Round 2: t = 2



• 3 misclassified (circled): $\epsilon_2 = 0.21 \rightarrow \beta_2 = 0.65$.

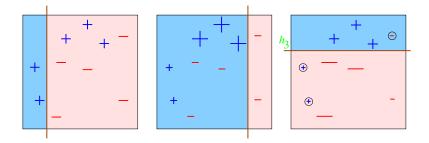
Round 2: t = 2



• 3 misclassified (circled): $\epsilon_2 = 0.21 \rightarrow \beta_2 = 0.65$.

• D_3 puts more weights on those examples

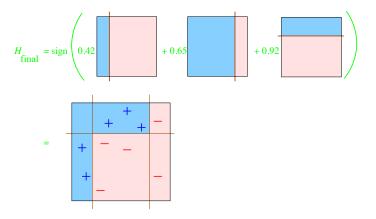
Round 3: t = 3



• again 3 misclassified (circled): $\epsilon_3 = 0.14 \rightarrow \beta_3 = 0.92$.

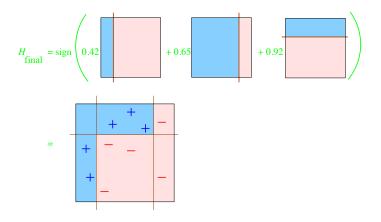
AdaBoost

Final classifier: combining 3 classifiers



AdaBoost

Final classifier: combining 3 classifiers



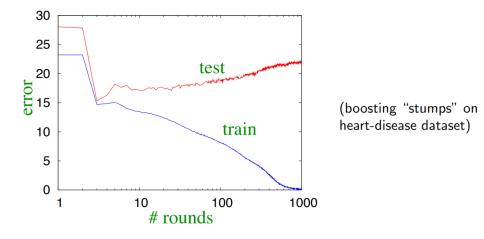
All data points are now classified correctly, even though each weak classifier makes 3 mistakes.

Overfitting

When T is large, the model is very complicated and overfitting can happen

Overfitting

When T is large, the model is very complicated and overfitting can happen

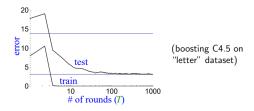


Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

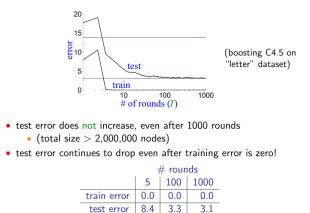


- test error does not increase, even after 1000 rounds
 - (total size > 2,000,000 nodes)
- test error continues to drop even after training error is zero!

	# rounds		
	5	100	1000
train error	0.0	0.0	0.0
test error	8.4	3.3	3.1

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting



Used to be a mystery, but by now rigorous theory has been developed to explain this phenomenon.

Why AdaBoost works?

In fact, AdaBoost also follows the general framework of minimizing some surrogate loss.

Why AdaBoost works?

In fact, AdaBoost also follows the general framework of minimizing some surrogate loss.

Step 1: the model that AdaBoost considers is

$$\left\{ \mathsf{sgn}\left(f(\cdot)\right) \ \Big| \ f(\cdot) = \sum_{t=1}^{T} \beta_t h_t(\cdot) \text{ for some } \beta_t \geq 0 \text{ and } h_t \in \mathcal{H} \right\}$$

where ${\boldsymbol{\mathcal{H}}}$ is the set of models considered by the base algorithm

Why AdaBoost works?

In fact, AdaBoost also follows the general framework of minimizing some surrogate loss.

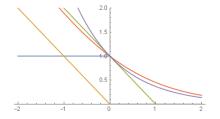
Step 1: the model that AdaBoost considers is

$$\left\{ \mathsf{sgn}\left(f(\cdot)\right) \ \Big| \ f(\cdot) = \sum_{t=1}^T \beta_t h_t(\cdot) \text{ for some } \beta_t \geq 0 \text{ and } h_t \in \mathcal{H} \right\}$$

where $\ensuremath{\mathcal{H}}$ is the set of models considered by the base algorithm

Step 2: the loss that AdaBoost minimizes is the exponential loss

$$\sum_{n=1}^{\mathsf{N}} \exp\left(-y_n f(\boldsymbol{x}_n)\right)$$



Step 3: the way that AdaBoost minimizes exponential loss is by a greedy approach, that is, find β_t, h_t one by one for $t = 1, \ldots, T$.

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy approach, that is, find β_t, h_t one by one for $t = 1, \ldots, T$.

Specifically, let $f_t = \sum_{\tau=1}^t \beta_{\tau} h_{\tau}$. Suppose we have found f_{t-1} , what should f_t be?

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy approach, that is, find β_t, h_t one by one for $t = 1, \ldots, T$.

Specifically, let $f_t = \sum_{\tau=1}^t \beta_{\tau} h_{\tau}$. Suppose we have found f_{t-1} , what should f_t be? Greedily, we want to find β_t , h_t to minimize

$$\sum_{n=1}^{\mathsf{N}} \exp\left(-y_n f_t(\boldsymbol{x}_n)\right)$$

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy approach, that is, find β_t, h_t one by one for $t = 1, \ldots, T$.

Specifically, let $f_t = \sum_{\tau=1}^t \beta_{\tau} h_{\tau}$. Suppose we have found f_{t-1} , what should f_t be? Greedily, we want to find β_t , h_t to minimize

$$\sum_{n=1}^{\mathsf{N}} \exp\left(-y_n f_t(\boldsymbol{x}_n)\right) = \sum_{n=1}^{\mathsf{N}} \exp\left(-y_n f_{t-1}(\boldsymbol{x}_n)\right) \exp\left(-y_n \beta_t h_t(\boldsymbol{x}_n)\right)$$

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy approach, that is, find β_t, h_t one by one for $t = 1, \ldots, T$.

Specifically, let $f_t = \sum_{\tau=1}^t \beta_{\tau} h_{\tau}$. Suppose we have found f_{t-1} , what should f_t be? Greedily, we want to find β_t , h_t to minimize

$$\sum_{n=1}^{\mathsf{N}} \exp\left(-y_n f_t(\boldsymbol{x}_n)\right) = \sum_{n=1}^{\mathsf{N}} \exp\left(-y_n f_{t-1}(\boldsymbol{x}_n)\right) \exp\left(-y_n \beta_t h_t(\boldsymbol{x}_n)\right)$$
$$\propto \sum_{n=1}^{\mathsf{N}} D_t(n) \exp\left(-y_n \beta_t h_t(\boldsymbol{x}_n)\right)$$

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy approach, that is, find β_t, h_t one by one for $t = 1, \ldots, T$.

Specifically, let $f_t = \sum_{\tau=1}^t \beta_{\tau} h_{\tau}$. Suppose we have found f_{t-1} , what should f_t be? Greedily, we want to find β_t , h_t to minimize

$$\sum_{n=1}^{\mathsf{N}} \exp\left(-y_n f_t(\boldsymbol{x}_n)\right) = \sum_{n=1}^{\mathsf{N}} \exp\left(-y_n f_{t-1}(\boldsymbol{x}_n)\right) \exp\left(-y_n \beta_t h_t(\boldsymbol{x}_n)\right)$$
$$\propto \sum_{n=1}^{\mathsf{N}} D_t(n) \exp\left(-y_n \beta_t h_t(\boldsymbol{x}_n)\right)$$

where the last step is by the definition of weights

$$D_t(n) \propto D_{t-1}(n) \exp\left(-y_n \beta_{t-1} h_{t-1}(\boldsymbol{x}_n)\right) \propto \cdots \propto \exp\left(-y_n f_{t-1}(\boldsymbol{x}_n)\right)$$

$$\sum_{n=1}^{\mathsf{N}} D_t(n) \exp\left(-y_n \beta_t h_t(\boldsymbol{x}_n)\right)$$

$$\begin{split} &\sum_{n=1}^{\mathsf{N}} D_t(n) \exp\left(-y_n \beta_t h_t(\boldsymbol{x}_n)\right) \\ &= \sum_{n: y_n \neq h_t(\boldsymbol{x}_n)} D_t(n) e^{\beta_t} + \sum_{n: y_n = h_t(\boldsymbol{x}_n)} D_t(n) e^{-\beta_t} \end{split}$$

$$\begin{split} &\sum_{n=1}^{\mathsf{N}} D_t(n) \exp\left(-y_n \beta_t h_t(\boldsymbol{x}_n)\right) \\ &= \sum_{n:y_n \neq h_t(\boldsymbol{x}_n)} D_t(n) e^{\beta_t} + \sum_{n:y_n = h_t(\boldsymbol{x}_n)} D_t(n) e^{-\beta_t} \\ &= \epsilon_t e^{\beta_t} + (1 - \epsilon_t) e^{-\beta_t} \qquad (\mathsf{recall} \ \epsilon_t = \sum_{n:y_n \neq h_t(\boldsymbol{x}_n)} D_t(n)) \end{split}$$

$$\begin{split} &\sum_{n=1}^{\mathsf{N}} D_t(n) \exp\left(-y_n \beta_t h_t(\boldsymbol{x}_n)\right) \\ &= \sum_{n:y_n \neq h_t(\boldsymbol{x}_n)} D_t(n) e^{\beta_t} + \sum_{n:y_n = h_t(\boldsymbol{x}_n)} D_t(n) e^{-\beta_t} \\ &= \epsilon_t e^{\beta_t} + (1 - \epsilon_t) e^{-\beta_t} \qquad (\text{recall } \epsilon_t = \sum_{n:y_n \neq h_t(\boldsymbol{x}_n)} D_t(n)) \\ &= \epsilon_t (e^{\beta_t} - e^{-\beta_t}) + e^{-\beta_t} \end{split}$$

Derivation of AdaBoost

Greedy minimization

So the goal becomes finding $\beta_t, h_t \in \mathcal{H}$ that minimize

$$\begin{split} &\sum_{n=1}^{\mathsf{N}} D_t(n) \exp\left(-y_n \beta_t h_t(\boldsymbol{x}_n)\right) \\ &= \sum_{n:y_n \neq h_t(\boldsymbol{x}_n)} D_t(n) e^{\beta_t} + \sum_{n:y_n = h_t(\boldsymbol{x}_n)} D_t(n) e^{-\beta_t} \\ &= \epsilon_t e^{\beta_t} + (1 - \epsilon_t) e^{-\beta_t} \qquad (\text{recall } \epsilon_t = \sum_{n:y_n \neq h_t(\boldsymbol{x}_n)} D_t(n)) \\ &= \epsilon_t (e^{\beta_t} - e^{-\beta_t}) + e^{-\beta_t} \end{split}$$

It is now clear we should find h_t to minimize the weighted classification error ϵ_t , exactly what the base algorithm should do intuitively!

So the goal becomes finding $\beta_t, h_t \in \mathcal{H}$ that minimize

$$\begin{split} &\sum_{n=1}^{\mathsf{N}} D_t(n) \exp\left(-y_n \beta_t h_t(\boldsymbol{x}_n)\right) \\ &= \sum_{n:y_n \neq h_t(\boldsymbol{x}_n)} D_t(n) e^{\beta_t} + \sum_{n:y_n = h_t(\boldsymbol{x}_n)} D_t(n) e^{-\beta_t} \\ &= \epsilon_t e^{\beta_t} + (1 - \epsilon_t) e^{-\beta_t} \qquad (\text{recall } \epsilon_t = \sum_{n:y_n \neq h_t(\boldsymbol{x}_n)} D_t(n)) \\ &= \epsilon_t (e^{\beta_t} - e^{-\beta_t}) + e^{-\beta_t} \end{split}$$

It is now clear we should find h_t to minimize the weighted classification error ϵ_t , exactly what the base algorithm should do intuitively!

This greedy step is abstracted out through a base algorithm.

When h_t (and thus ϵ_t) is fixed, we then find β_t to minimize

$$\epsilon_t (e^{\beta_t} - e^{-\beta_t}) + e^{-\beta_t}$$

When h_t (and thus ϵ_t) is fixed, we then find β_t to minimize

$$\epsilon_t (e^{\beta_t} - e^{-\beta_t}) + e^{-\beta_t}$$

This gives the following (*verify!*):

$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

When h_t (and thus ϵ_t) is fixed, we then find β_t to minimize

$$\epsilon_t (e^{\beta_t} - e^{-\beta_t}) + e^{-\beta_t}$$

This gives the following (*verify!*):

$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Keep doing this greedy minimization gives the AdaBoost algorithm.

Key idea of boosting is to combine weak predictors into a strong one.

Key idea of boosting is to combine weak predictors into a strong one.

There are many boosting algorithms; AdaBoost is the most classic one.

Key idea of boosting is to combine weak predictors into a strong one.

There are many boosting algorithms; AdaBoost is the most classic one.

AdaBoost is greedily minimizing the exponential loss.

Key idea of boosting is to combine weak predictors into a strong one.

There are many boosting algorithms; AdaBoost is the most classic one.

AdaBoost is greedily minimizing the exponential loss.

AdaBoost tends to not overfit.