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@ Some theory on NNC
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Homeworks

@ HW 0 is due on Friday. It will not be graded, only to get everyone
familiar with the submission mechanism.

e HW 1 will be released on Friday (01/22/2021). Starting HW 1
assignments will be graded.
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Last Class: Foundations of ML

@ We discussed different flavors of learning problems
@ Tools from probability, information theory, and optimization

@ Today: We will start our journey of Supervised learning starting with
classification.
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Classification and Nearest Neighbor Classifier (NNC)

Outline

© Classification and Nearest Neighbor Classifier (NNC)
@ Intuitive example
@ General setup for classification
@ Algorithm
@ How to measure performance
@ Variants, Parameters, and Tuning
@ Summary
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Classification and Nearest Neighbor Classifier (NNC) Intuitive example

Recognizing flowers

Types of lIris: setosa, versicolor, and virginica
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Classification and Nearest Neighbor Classifier (NNC) BRIV ETTA S

Measuring the properties of the flowers

Features and attributes: the widths and lengths of sepal and petal
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Classification and Nearest Neighbor Classifier (NNC)

Often, data is conveniently organized as a table

Fisher's Iris Data

Sepal length ¢ Sepal width ¢ Petal length ¢ Petal width # |Species #
5.1 3.5 1.4 0.2 I. setosa
4.9 3.0 1.4 0.2 I. setosa
4.7 3.2 1.3 0.2 I. setosa
4.6 341 1.5 0.2 I. setosa
5.0 3.6 1.4 0.2 I. setosa
54 3.9 1.7 0.4 I. setosa
4.6 3.4 1.4 0.3 I. setosa
5.0 3.4 1.5 0.2 I. setosa
4.4 2.9 1.4 0.2 1. setosa
4.9 3.1 1.5 0.1 I. setosa




Classification and Nearest Neighbor Classifier (NNC) BRIV ETTA S

Pairwise scatter plots of 131 flower specimens
Visualization of data helps identify the right learning model to use
Each colored point is a flower specimen: setosa, versicolor, virginica

sepal length sepal width petal length petal width

sepal length

sepal width

petal length

petal width
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Classification and Nearest Neighbor Classifier (NNC) Intuitive example

Different types seem well-clustered and separable
Using two features: petal width and sepal length
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Classification and Nearest Neighbor Classifier (NNC) Intuitive example

Labeling an unknown flower type

Closer to red cluster: so labeling it as setosa
?

sepal length sepal width petal length petal width

sepal length

sepal width

petal length

petal width
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Classification and Nearest Neighbor Classifier (NNC)

General setup for multi-class classification

Training data (set)
e N samples/instances: D™AN = {(x1,y1), (X2,42), + , (N, YN) }



Classification and Nearest Neighbor Classifier (NNC)

General setup for multi-class classification

Training data (set)
e N samples/instances: D™AN = {(x1,y1), (X2,42), + , (N, YN) }

e Each x,, € RP is called a feature vector.
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General setup for multi-class classification

Training data (set)
o N samples/instances: D™ = {(x1,y1), (2,92), -, (ZN,YN) }
e Each x,, € RP is called a feature vector.
e Each y, € [C] ={1,2,---,C} is called a label/class/category.
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General setup for multi-class classification

Training data (set)

N samples/instances: D™ = {(x1,11), (x2,92), - , (N, YUN) }
Each ,, € RP is called a feature vector.

Each y,, € [C] = {1,2,---,C} is called a label/class/category.

They are used to learn a classifier f : RP — [C] for future prediction.
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General setup for multi-class classification

Training data (set)
o N samples/instances: D™ = {(x1,y1), (2,92), -, (ZN,YN) }
e Each x,, € RP is called a feature vector.
e Each y, € [C] ={1,2,---,C} is called a label/class/category.
@ They are used to learn a classifier f : R® — [C] for future prediction.

Special case: binary classification
@ Number of classes: C =2
o Conventional labels: {0,1} or {—1,+1}
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Nearest neighbor classification (NNC)

The index of the nearest neighbor of a point x is

D

nn(x) = argmin | — x,||2 = argmin Z Tg — Tnd)?
n€e[N] n€e[N] =1

where || - ||2 is the {2 /Euclidean distance.



Classification and Nearest Neighbor Classifier (NNC) BVl

Nearest neighbor classification (NNC)

The index of the nearest neighbor of a point x is

D
nn(x) = argmin || — x,||2 = argmin Z(azd — Znd)?
née[N] née[N] =1

where || - ||2 is the {2 /Euclidean distance.

Classification rule
f(x) = Ynn(x)
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Classification and Nearest Neighbor Classifier (NNC)

Visual example

In this 2-dimensional example, the nearest point to x is a red training
instance, thus, « will be labeled as red.

x2“




Classification and Nearest Neighbor Classifier (NNC)

Example: classify Iris with two features

Training data

ID (n) | petal width (x1) | sepal length (z2) | category (v)
1 0.2 5.1 setoas
2 1.4 7.0 versicolor
3 25 6.7 virginica




Classification and Nearest Neighbor Classifier (NNC) BVl

Example: classify Iris with two features

Training data

ID (n) | petal width (x1) | sepal length (z2) | category (v)
1 0.2 5.1 setoas
2 14 7.0 versicolor
3 25 6.7 virginica

Flower with unknown category

petal width = 1.8 and sepal length = 6.4 (i.e. x = (1.8,6.4))
Calculating distance || — x,||2 = \/(xl — p1)? + (22 — 2p2)?

ID | distance
1 1.75
2 0.72
3 0.76

Thus, the category is versicolor.
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Classification and Nearest Neighbor Classifier (NNC) BVl

Decision boundary

For every point in the space, we can determine its label using the NNC

rule. This gives rise to a decision boundary that partitions the space into
different regions.

£L'2‘
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(GEES LT IED T BN EEIEE S NETEG TR O EESITE A (NG How to measure performance

Is NNC doing the right thing for us?

Intuition
We should compute accuracy (A) — the percentage of data points being

correctly classified, or the error rate (¢)— the percentage of data points
being incorrectly classified. (accuracy + error rate = 1)
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Is NNC doing the right thing for us?

Intuition

We should compute accuracy (A) — the percentage of data points being
correctly classified, or the error rate (¢)— the percentage of data points
being incorrectly classified. (accuracy + error rate = 1)

Defined on the training data set
1
TRAIN __ o TRAIN __
A N En [[f(zn) == ynl], € =N E f(®n) # ynl

where I[] is the indicator function.
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Is NNC doing the right thing for us?

Intuition

We should compute accuracy (A) — the percentage of data points being
correctly classified, or the error rate (¢)— the percentage of data points
being incorrectly classified. (accuracy + error rate = 1)

Defined on the training data set
1
TRAIN __ o TRAIN __
A N En [[f(zn) == ynl], € =N E f(®n) # ynl

where I[] is the indicator function.

Is this the right measure?
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Example

Training data

What are ATRAIN gpd ¢TRAIN?



Classification and Nearest Neighbor Classifier (NNC)

Example

Training data

What are ATRAIN gpd ¢TRAIN?
ATRAIN — 100%’ 6TRAIN — 0%

For every training data point, its nearest neighbor is itself.
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Test Error

Does it mean nearest neighbor is a very good algorithm?
Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data



(GEES LT IED T BN EEIEE S NETEG TR O EESITE A (NG How to measure performance

Test Error

Does it mean nearest neighbor is a very good algorithm?
Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

Test/Evaluation data
o DTEST — {(mbyl)? (m27y2)7 T, (mMayM)}
@ A fresh dataset, not overlap with training set.
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Test Error

Does it mean nearest neighbor is a very good algorithm?
Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

Test/Evaluation data
o DTEST — {(mbyl)? (m27y2)7 T, (mMayM)}
@ A fresh dataset, not overlap with training set.

@ Test accuracy and test error

ATEST _ %Zﬂ[f(wnﬂ ==yn], "= %Zﬂ[f(wm) # Y
m M
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(GEES LT IED T BN EEIEE S NETEG TR O EESITE A (NG How to measure performance

Test Error

Does it mean nearest neighbor is a very good algorithm?
Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

Test/Evaluation data

o D' = {(z1,y1), (x2,y2), -, (Tm, ym) }
@ A fresh dataset, not overlap with training set.

@ Test accuracy and test error
1 1
AT = M Zﬂ[f(an == Ym), €T = M Zﬂ[f(mm) # Yl
m M
@ Good measurement of a classifier's performance
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Variant 1: measure nearness with other distances

Previously, we use the Euclidean distance

nn(x) = argmin || — x,||2
n€(N]

EEEERNEXZ
Many other alternative distances BEEEBERVKZE
E.g., the following L; distance (i.e., city EEEVZER
block distance, or Manhattan distance)

' EEZEER

D
& — 2l =Y 24 — Tndl ZEEEEN

d=1

Green line is Euclidean distance.
Red, Blue, and lines are
L4 distance
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Variant 1: measure nearness with other distances

Previously, we use the Euclidean distance

nn(x) = argmin ||x — x, |2
née[N]

Many other alternative distances /
E.g., the following L, distance (i.e., city /
block distance, or Manhattan distance) /

Vi

D
| = @nlly =) |4 — Tndl

d=1

More generally, L, distance (for p > 1):

& — @, = (Z

d

Green line is Euclidean distance.

1/p Red, Blue, and lines are
lzg — xnd‘p) L, distance
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(GEEE TR RN EETEE RN ETG IO EEIN (NN @M Variants, Parameters, and Tuning

Variant 2: K-nearest neighbor (KNN)

Increase the number of nearest neighbors to use?
o l-nearest neighbor: nni(z) = argmin, ¢ [|Z — @n |2
@ 2-nearest neighbor: nny(z) = argmin,,c(\j\nn, (2) 1T — Znll2

@ 3-nearest neighbor: nnz(z) = argmin, ¢\ fan, ()00 (2)} 1T — Tnll2
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Variant 2: K-nearest neighbor (KNN)

Increase the number of nearest neighbors to use?
o l-nearest neighbor: nni(z) = argmin, ¢ [|Z — @n |2

@ 2-nearest neighbor: nny(z) = argmin,, ¢y, )1z — |2

\nni(x

@ 3-nearest neighbor: nnz(z) = argmin, ¢\ fan, ()00 (2)} 1T — Tnll2

The set of K-nearest neighbor

knn(x) = {nny(x),nna(x), -+ ,nnx(x)}
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Variant 2: K-nearest neighbor (KNN)

Increase the number of nearest neighbors to use?
o l-nearest neighbor: nni(z) = argmin, ¢ [|Z — @n |2

@ 2-nearest neighbor: nny(z) = argmin,, ¢y, )1z — |2

\nni(x

@ 3-nearest neighbor: nnz(z) = argmin, ¢\ fan, ()00 (2)} 1T — Tnll2

The set of K-nearest neighbor
knn(x) = {nny(x),nna(x), -+ ,nnx(x)}

Note: we have

|2 — Znn, (@) ll2 < 1T = Tony@)ll2- - < 1T — Ton )2

23 / 42



How to classify with K neighbors?

Classification rule

@ Every neighbor votes: naturally x,, votes for its label y,.
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How to classify with K neighbors?

Classification rule

@ Every neighbor votes: naturally x,, votes for its label y,.

o Aggregate everyone's vote on a class label ¢

Ve = Z Wy, ==¢), YV ce]C]

neknn(x)
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How to classify with K neighbors?

Classification rule

@ Every neighbor votes: naturally x,, votes for its label y,.

o Aggregate everyone's vote on a class label ¢

Ve = Z ly, ==c¢), V celC]

neknn(x)

@ Predict with the majority

f(x) = argmax v,
c€[C]
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Classification and Nearest Neighbor Classifier (NNC)

Example

K=1, Label: red

T2

T2

K=3, Label: red

T2

Variants, Parameters, and Tuning

K=5, Label: blue
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Decision boundary
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When K increases, the decision boundary becomes smoother.
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Decision boundary
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When K increases, the decision boundary becomes smoother.

What happens when K = N?
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Variant 3: Preprocessing data

One issue of NNC: distances depend on units of the features!
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Variant 3: Preprocessing data

One issue of NNC: distances depend on units of the features!
One solution: preprocess data so it looks more “normalized”.
Example:

@ compute the means and standard deviations in each feature

_ 1 1 _
TSN 2t 5 o 2 )

@ Scale the feature accordingly

Tnd — Td
Sd

Tnd <
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Variant 3: Preprocessing data

One issue of NNC: distances depend on units of the features!

One solution: preprocess data so it looks more “normalized”.

Example:
@ compute the means and standard deviations in each feature
1

_ 1 _
TSN 2t 5 o 2 )

@ Scale the feature accordingly

Tnd — Td
Sd

Tnd <

Many other ways of normalizing data.
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Which variants should we use?

Hyper-parameters in NNC
@ The distance measure (e.g. the parameter p for L, norm)
e K (i.e. how many nearest neighbor?)

@ Different ways of preprocessing
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Which variants should we use?

Hyper-parameters in NNC
@ The distance measure (e.g. the parameter p for L, norm)
e K (i.e. how many nearest neighbor?)

@ Different ways of preprocessing

Most algorithms have hyper-parameters. Tuning them is a significant part
of applying an algorithm.
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Tuning via a development dataset

Training data

e N samples/instances: D™ = {(x1,y1), (x2,y2), - , (N, UN) }
@ They are used to learn f(-)

Test data
e M samples/instances: D™ = {(x1,y1), (z2,42), - , (M, ym) }

@ They are used to evaluate how well f(-) will do.
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Tuning via a development dataset

Training data

e N samples/instances: D™ = {(x1,y1), (x2,y2), - , (N, UN) }
@ They are used to learn f(-)

Test data
e M samples/instances: D™ = {(x1,y1), (z2,42), - , (M, ym) }

@ They are used to evaluate how well f(-) will do.

Development/Validation data
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Tuning via a development dataset

Training data

e N samples/instances: D™ = {(x1,y1), (x2,y2), - , (N, UN) }
@ They are used to learn f(-)

Test data
e M samples/instances: D™ = {(x1,y1), (z2,42), - , (M, ym) }

@ They are used to evaluate how well f(-) will do.

Development/Validation data

oL samples/instances: DV = {(wla yl)v (m% y2)7 Ty (va yL)}
@ They are used to optimize hyper-parameter(s).

These three sets should not overlap!
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Classification and Nearest Neighbor Classifier (NNC)
Recipe

@ For each possible value of the hyperparameter (e.g. K =1,3,--+)

e Train a model using DTRAIN

o Evaluate the performance of the model on DV
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Recipe

@ For each possible value of the hyperparameter (e.g. K =1,3,-+)

e Train a model using DTRAIN

o Evaluate the performance of the model on DP®Y

@ Choose the model with the best performance on DPEY
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Recipe

@ For each possible value of the hyperparameter (e.g. K =1,3,-+)

e Train a model using DTRAIN

o Evaluate the performance of the model on DP®Y

@ Choose the model with the best performance on DPEY

o Evaluate the model on DT®ST

30 / 42
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What if we do not have a development set?
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S-fold Cross-validation

What if we do not have a development set?

@ Split the training data into S S = 5: 5-fold cross validation
equal parts.
@ Use each part in turn as a - | | [ | run

development dataset and use
the others as a training dataset.
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S-fold Cross-validation

What if we do not have a development set?

@ Split the training data into S S = 5: 5-fold cross validation
equal parts.
@ Use each part in turn as a - | | [ | run

development dataset and use
the others as a training dataset.

@ Choose the hyper-parameter
leading to best average
performance.
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S-fold Cross-validation

What if we do not have a development set?

@ Split the training data into S S = 5: 5-fold cross validation
equal parts.
@ Use each part in turn as a I |

development dataset and use
the others as a training dataset.

@ Choose the hyper-parameter
leading to best average
performance.

Special case: S = N, called leave-one-out.
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@ Split the training data into S equal parts. Denote each part as DI*4N,
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Cross-validation recipe

@ Split the training data into S equal parts. Denote each part as DI*4N,
@ For each possible value of the hyper-parameter (e.g. K =1,3,---)
o For every s € [S]

o Train a model using D{;*™ = D™ — DN

e Evaluate the performance of the model on D™

o Average the S performance metrics
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Cross-validation recipe

@ Split the training data into S equal parts. Denote each part as DI*4N,

@ For each possible value of the hyper-parameter (e.g. K =1,3,---)
o For every s € [S]

o Train a model using D{;*™ = D™ — DN

o Evaluate the performance of the model on D™

o Average the S performance metrics

@ Choose the hyper-parameter with the best averaged performance
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Cross-validation recipe

@ Split the training data into S equal parts. Denote each part as DI*4N,

For each possible value of the hyper-parameter (e.g. K =1,3,---)
o For every s € [S]

o Train a model using D{;*™ = D™ — DN

o Evaluate the performance of the model on D™

o Average the S performance metrics

Choose the hyper-parameter with the best averaged performance

Use the best hyper-parameter to train a model using all D@
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Cross-validation recipe

@ Split the training data into S equal parts. Denote each part as DI*4N,

For each possible value of the hyper-parameter (e.g. K =1,3,---)
o For every s € [S]

o Train a model using D{;*™ = D™ — DN

o Evaluate the performance of the model on D™

o Average the S performance metrics

Choose the hyper-parameter with the best averaged performance

Use the best hyper-parameter to train a model using all D@

Evaluate the model on DT#ST

32/ 42



Classification and Nearest Neighbor Classifier (NNC)

Summary

Advantages of NNC

@ Simple, easy to implement (widely used in practice)



Classification and Nearest Neighbor Classifier (NNC) BTl iE %

Summary

Advantages of NNC
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D is the dimension of the training example.
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Summary

Advantages of NNC
@ Simple, easy to implement (widely used in practice)

Disadvantages of NNC

e Computationally intensive for large-scale problems: O(N D) for each
prediction naively. Here, N is the cardinality of the training set and
D is the dimension of the training example.

@ Need to “carry” the training data around. This type of method is
called nonparametric.
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Summary

Advantages of NNC

@ Simple, easy to implement (widely used in practice)

Disadvantages of NNC

e Computationally intensive for large-scale problems: O(N D) for each
prediction naively. Here, N is the cardinality of the training set and
D is the dimension of the training example.

@ Need to “carry” the training data around. This type of method is
called nonparametric.

@ Choosing the right hyper-parameters can be involved.

33 /42
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Summary

Typical steps of developing a machine learning system:
@ Collect data, split into training, development, and test sets.

@ Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

@ Evaluate using the test data and report performance.

@ Use the model to predict future/make decisions.
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@ Some theory on NNC
o Step 1. Expected risk
o Step 2: The ideal classifier
@ Step 3: Comparing NNC to the ideal classifier
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How good is NNC really?

To answer this question, we proceed in 3 steps
@ Define more carefully a performance metric for a classifier.
@ Hypothesize an ideal classifier - the best possible one.

© Compare NNC to the ideal one.
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Some theory on NNC

Why does test error make sense?

Test error makes sense only when training set and test set are correlated.



Some theory on NNC Step 1: Expected risk

Why does test error make sense?

Test error makes sense only when training set and test set are correlated.

Most standard assumption: every data point (x,y) (from DTRAN DPEV,
or D™5T) is an independent and identically distributed (i.i.d.) sample of
an unknown joint distribution P.

. j.i.d.
o often written as (z,y) "< P

37 /42



Some theory on NNC Step 1: Expected risk

Why does test error make sense?

Test error makes sense only when training set and test set are correlated.

Most standard assumption: every data point (x,y) (from DTRAN DPEV,
or D™5T) is an independent and identically distributed (i.i.d.) sample of
an unknown joint distribution P.

e often written as (x,y) o

Test error of a fixed classifier is therefore a random variable.

37 /42



Some theory on NNC Step 1: Expected risk

Why does test error make sense?

Test error makes sense only when training set and test set are correlated.

Most standard assumption: every data point (x,y) (from DTRAN DPEV,
or D™5T) is an independent and identically distributed (i.i.d.) sample of
an unknown joint distribution P.

e often written as (x,y) o

Test error of a fixed classifier is therefore a random variable.

Need a more “certain” measure of performance (so it's easy to compare
different classifiers for example).

37 /42
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Expected error

What about the expectation of this random variable?

M
E[ETEST] _ % Z E(mm,ym)NPH[f(xm) # Ym] = E(m,y)wpﬂ[f(ﬂ?) # 1]
1

m=

@ i.e. the expected error/mistake of f

Test error is a proxy of expected error. The larger the test set, the better
the approximation.
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Expected error

What about the expectation of this random variable?
M
TEST 1
E[e™] = i Z E (@ o)~ P (®m) 7# yYm] = Bz y)~plf(2) # Y]
m=1

@ i.e. the expected error/mistake of f

Test error is a proxy of expected error. The larger the test set, the better
the approximation.

What about the expectation of training error? Is training error a good
proxy of expected error?

38 /42
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St e
Expected risk

More generally, for a loss function L(y',y),

e eg. L(y,y) =1y #y], called 0-1 loss. Default

@ many more other losses as we will see.

the expected risk of f is defined as

R(f) = E(w,y)NPL(f(x)7 y)
For 0-1 loss we have

R(f) = E@y~plly # ¥
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What should we predict for @, knowing P(y|x)?
Bayes optimal classifier: f*(x) = argmax c|c P(c[z).

The optimal risk: R(f*) =

Eg~p, [l — max.cc) P(c|z)] where Py is the
marginal distribution of x.
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Some theory on NNC Step 2: The ideal classifier

Bayes optimal classifier
What should we predict for @, knowing P(y|x)?
Bayes optimal classifier: f*(x) = argmax c|c P(c[z).

The optimal risk: R(f*) = Exp, [1 — max.c(c) P(c|x)] where Py is the
marginal distribution of x.

That is we have R(f*) < R(f) for any f. Verify!

For special case C = 2, let n(x) = P(0|x), then

R(f*) = E:BNP;,; []Ey|w[]1f*(a:)7ﬁy“
= Egnp, [1(2) g+ (zy=1 + (1 = 1(2)) L+ ()0
= Egpp, [min{n(x),1 — n(x)}],
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Comparing NNC to Bayes optimal classifier

Come back to the question: how good is NNC?

Theorem (Cover and Hart, 1967)

Let fn be the 1-nearest neighbor binary classifier using N training data
points, we have (under mild conditions)

R(f*) < Jim E[R(fx)] < 2R(f")

i.e., expected risk of NNC in the limit is at most twice of the best possible.
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Comparing NNC to Bayes optimal classifier

Come back to the question: how good is NNC?

Theorem (Cover and Hart, 1967)

Let fn be the 1-nearest neighbor binary classifier using N training data
points, we have (under mild conditions)

R(f*) < Jim E[R(fx)] < 2R(f")

i.e., expected risk of NNC in the limit is at most twice of the best possible.

A pretty strong guarantee.
In particular, R(f*) = 0 implies E[R(fn)] — 0.
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Fact: Znng,) — & as N — oo with probability 1

E[R(fN)] = E[E(zy)~pLfn (2) # y]]
— EwNPmEy,y’i'ibd'P(m) [H[y/ # y]]
Iy =0and y=1]+ 1y =1 and y = 0]]

=Egzp,E i
e~ Pay '~'d'P(-|w)[



Step 3: Comparing NNC to the ideal classifier
Proof sketch

Fact: xnn,, — @ as N — oo with probability 1

E[R(fN)] = E[E@ y)~pllfn(2) # Y]]
= Bonp,B i MY # 9l

:EmwpwE i (|)[[ y=0and y=1]+1[y =1 and y = 0]]
= Eznp,[n ( )A =n(z)) + (1 = n(z))n(x)]
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Step 3: Comparing NNC to the ideal classifier
Proof sketch

Fact: xnn,, — @ as N — oo with probability 1

E[R(fN)] = E[E(zy)~pLfn (2) # y]]
— EwNPmE ,Md |a:)[ [y 7£ y”
:EmwpwE i (|)[[ y=0and y=1]+1[y =1 and y = 0]]
= Eznp, [77( )1 =n(x)) + (1 = n(z))n(z)]
= 2Eqp, [n(2)(1 — n(x))]

< 2Eqp, [min{n(@), (1 - n(x))}]
= 2R(f)
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