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Logistics

Homeworks

HW 0 is due on Friday. It will not be graded, only to get everyone
familiar with the submission mechanism.

HW 1 will be released on Friday (01/22/2021). Starting HW 1
assignments will be graded.
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Recap

Last Class: Foundations of ML

We discussed different flavors of learning problems

Tools from probability, information theory, and optimization

Today: We will start our journey of Supervised learning starting with
classification.
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Classification and Nearest Neighbor Classifier (NNC) Intuitive example

Recognizing flowers

Types of Iris: setosa, versicolor, and virginica

8 / 42



Classification and Nearest Neighbor Classifier (NNC) Intuitive example

Measuring the properties of the flowers

Features and attributes: the widths and lengths of sepal and petal
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Classification and Nearest Neighbor Classifier (NNC) Intuitive example

Often, data is conveniently organized as a table
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Classification and Nearest Neighbor Classifier (NNC) Intuitive example

Pairwise scatter plots of 131 flower specimens

Visualization of data helps identify the right learning model to use

Each colored point is a flower specimen: setosa, versicolor, virginica
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Classification and Nearest Neighbor Classifier (NNC) Intuitive example

Different types seem well-clustered and separable

Using two features: petal width and sepal length
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Classification and Nearest Neighbor Classifier (NNC) Intuitive example

Labeling an unknown flower type

Closer to red cluster: so labeling it as setosa
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Classification and Nearest Neighbor Classifier (NNC) General setup for classification

General setup for multi-class classification

Training data (set)

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}

Each xn ∈ RD is called a feature vector.

Each yn ∈ [C] = {1, 2, · · · ,C} is called a label/class/category.

They are used to learn a classifier f : RD → [C] for future prediction.

Special case: binary classification

Number of classes: C = 2

Conventional labels: {0, 1} or {−1,+1}
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Classification and Nearest Neighbor Classifier (NNC) Algorithm

Nearest neighbor classification (NNC)

The index of the nearest neighbor of a point x is

nn(x) = argmin
n∈[N]

‖x− xn‖2 = argmin
n∈[N]

√√√√ D∑
d=1

(xd − xnd)2

where ‖ · ‖2 is the `2/Euclidean distance.

Classification rule
f(x) = ynn(x)
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Classification and Nearest Neighbor Classifier (NNC) Algorithm

Visual example

In this 2-dimensional example, the nearest point to x is a red training
instance, thus, x will be labeled as red.

x1

x2

(a)

16 / 42



Classification and Nearest Neighbor Classifier (NNC) Algorithm

Example: classify Iris with two features

Training data

ID (n) petal width (x1) sepal length (x2) category (y)

1 0.2 5.1 setoas

2 1.4 7.0 versicolor

3 2.5 6.7 virginica
...

...
...

Flower with unknown category
petal width = 1.8 and sepal length = 6.4 (i.e. x = (1.8, 6.4))
Calculating distance ‖x− xn‖2 =

√
(x1 − xn1)2 + (x2 − xn2)2

ID distance

1 1.75

2 0.72

3 0.76

Thus, the category is versicolor.
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Classification and Nearest Neighbor Classifier (NNC) Algorithm

Decision boundary

For every point in the space, we can determine its label using the NNC
rule. This gives rise to a decision boundary that partitions the space into
different regions.

x1

x2

(b)
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Classification and Nearest Neighbor Classifier (NNC) How to measure performance

Is NNC doing the right thing for us?

Intuition
We should compute accuracy (A) — the percentage of data points being
correctly classified, or the error rate (ε)— the percentage of data points
being incorrectly classified. (accuracy + error rate = 1)

Defined on the training data set

Atrain =
1

N

∑
n

I[f(xn) == yn], εtrain =
1

N

∑
n

I[f(xn) 6= yn]

where I[·] is the indicator function.

Is this the right measure?
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Classification and Nearest Neighbor Classifier (NNC) How to measure performance

Example

Training data

What are Atrain and εtrain?

Atrain = 100%, εtrain = 0%

For every training data point, its nearest neighbor is itself.
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Classification and Nearest Neighbor Classifier (NNC) How to measure performance

Test Error

Does it mean nearest neighbor is a very good algorithm?

Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

Test/Evaluation data

Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
A fresh dataset, not overlap with training set.

Test accuracy and test error

Atest =
1

M

∑
m

I[f(xm) == ym], εtest =
1

M

∑
M

I[f(xm) 6= ym]

Good measurement of a classifier’s performance
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Classification and Nearest Neighbor Classifier (NNC) Variants, Parameters, and Tuning

Variant 1: measure nearness with other distances

Previously, we use the Euclidean distance

nn(x) = argmin
n∈[N]

‖x− xn‖2

Many other alternative distances
E.g., the following L1 distance (i.e., city
block distance, or Manhattan distance)

‖x− xn‖1 =

D∑
d=1

|xd − xnd|

More generally, Lp distance (for p ≥ 1):

‖x− xn‖p =

(∑
d

|xd − xnd|p
)1/p

Green line is Euclidean distance.

Red, Blue, and Yellow lines are

L1 distance
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Classification and Nearest Neighbor Classifier (NNC) Variants, Parameters, and Tuning

Variant 2: K-nearest neighbor (KNN)

Increase the number of nearest neighbors to use?

1-nearest neighbor: nn1(x) = argminn∈[N] ‖x− xn‖2
2-nearest neighbor: nn2(x) = argminn∈[N]\nn1(x) ‖x− xn‖2
3-nearest neighbor: nn3(x) = argminn∈[N]\{nn1(x),nn2(x)} ‖x− xn‖2

The set of K-nearest neighbor

knn(x) = {nn1(x), nn2(x), · · · , nnK(x)}

Note: we have

‖x− xnn1(x)‖2 ≤ ‖x− xnn2(x)‖2 · · · ≤ ‖x− xnnK(x)‖2
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Classification and Nearest Neighbor Classifier (NNC) Variants, Parameters, and Tuning

How to classify with K neighbors?

Classification rule

Every neighbor votes: naturally xn votes for its label yn.

Aggregate everyone’s vote on a class label c

vc =
∑

n∈knn(x)

I(yn == c), ∀ c ∈ [C]

Predict with the majority

f(x) = argmax
c∈[C]

vc
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Classification and Nearest Neighbor Classifier (NNC) Variants, Parameters, and Tuning

Example

K=1, Label: red

x1

x2

(a)

K=3, Label: red

x1

x2

(a)

K=5, Label: blue

x1

x2

(a)
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Classification and Nearest Neighbor Classifier (NNC) Variants, Parameters, and Tuning

Decision boundary

x6

x7

K = 1

0 1 2
0

1

2

x6

x7

K = 3

0 1 2
0

1

2

x6

x7

K = 31

0 1 2
0

1

2

When K increases, the decision boundary becomes smoother.

What happens when K = N?
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Classification and Nearest Neighbor Classifier (NNC) Variants, Parameters, and Tuning

Variant 3: Preprocessing data

One issue of NNC: distances depend on units of the features!

One solution: preprocess data so it looks more “normalized”.

Example:

compute the means and standard deviations in each feature

x̄d =
1

N

∑
n

xnd, s2d =
1

N − 1

∑
n

(xnd − x̄d)2

Scale the feature accordingly

xnd ←
xnd − x̄d

sd

Many other ways of normalizing data.
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Classification and Nearest Neighbor Classifier (NNC) Variants, Parameters, and Tuning

Which variants should we use?

Hyper-parameters in NNC

The distance measure (e.g. the parameter p for Lp norm)

K (i.e. how many nearest neighbor?)

Different ways of preprocessing

Most algorithms have hyper-parameters. Tuning them is a significant part
of applying an algorithm.
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Classification and Nearest Neighbor Classifier (NNC) Variants, Parameters, and Tuning

Tuning via a development dataset

Training data

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
They are used to learn f(·)

Test data

M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
They are used to evaluate how well f(·) will do.

Development/Validation data

L samples/instances: Ddev = {(x1, y1), (x2, y2), · · · , (xL, yL)}
They are used to optimize hyper-parameter(s).

These three sets should not overlap!
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Classification and Nearest Neighbor Classifier (NNC) Variants, Parameters, and Tuning

Recipe

For each possible value of the hyperparameter (e.g. K = 1, 3, · · · )

Train a model using Dtrain

Evaluate the performance of the model on Ddev

Choose the model with the best performance on Ddev

Evaluate the model on Dtest
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Classification and Nearest Neighbor Classifier (NNC) Variants, Parameters, and Tuning

S-fold Cross-validation

What if we do not have a development set?

Split the training data into S
equal parts.

Use each part in turn as a
development dataset and use
the others as a training dataset.

Choose the hyper-parameter
leading to best average
performance.

S = 5: 5-fold cross validation

Special case: S = N, called leave-one-out.
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Classification and Nearest Neighbor Classifier (NNC) Variants, Parameters, and Tuning

Cross-validation recipe

Split the training data into S equal parts. Denote each part as Dtrain
s .

For each possible value of the hyper-parameter (e.g. K = 1, 3, · · · )
For every s ∈ [S]

Train a model using Dtrain
\s = Dtrain −Dtrain

s

Evaluate the performance of the model on Dtrain
s

Average the S performance metrics

Choose the hyper-parameter with the best averaged performance

Use the best hyper-parameter to train a model using all Dtrain

Evaluate the model on Dtest
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Classification and Nearest Neighbor Classifier (NNC) Summary

Summary

Advantages of NNC

Simple, easy to implement (widely used in practice)

Disadvantages of NNC

Computationally intensive for large-scale problems: O(ND) for each
prediction naively. Here, N is the cardinality of the training set and
D is the dimension of the training example.

Need to “carry” the training data around. This type of method is
called nonparametric.

Choosing the right hyper-parameters can be involved.
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Classification and Nearest Neighbor Classifier (NNC) Summary

Summary

Typical steps of developing a machine learning system:

Collect data, split into training, development, and test sets.

Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

Evaluate using the test data and report performance.

Use the model to predict future/make decisions.
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Some theory on NNC

Outline

1 Logistics

2 Recap

3 Classification and Nearest Neighbor Classifier (NNC)

4 Some theory on NNC
Step 1: Expected risk
Step 2: The ideal classifier
Step 3: Comparing NNC to the ideal classifier
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Some theory on NNC

How good is NNC really?

To answer this question, we proceed in 3 steps

1 Define more carefully a performance metric for a classifier.

2 Hypothesize an ideal classifier - the best possible one.

3 Compare NNC to the ideal one.
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Some theory on NNC Step 1: Expected risk

Why does test error make sense?

Test error makes sense only when training set and test set are correlated.

Most standard assumption: every data point (x, y) (from Dtrain, Ddev,
or Dtest) is an independent and identically distributed (i.i.d.) sample of
an unknown joint distribution P.

often written as (x, y)
i.i.d.∼ P

Test error of a fixed classifier is therefore a random variable.

Need a more “certain” measure of performance (so it’s easy to compare
different classifiers for example).
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Some theory on NNC Step 1: Expected risk

Expected error

What about the expectation of this random variable?

E[εtest]

=
1

M

M∑
m=1

E(xm,ym)∼PI[f(xm) 6= ym] = E(x,y)∼PI[f(x) 6= y]

i.e. the expected error/mistake of f

Test error is a proxy of expected error. The larger the test set, the better
the approximation.

What about the expectation of training error? Is training error a good
proxy of expected error?
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Some theory on NNC Step 1: Expected risk

Expected risk

More generally, for a loss function L(y′, y),

e.g. L(y′, y) = I[y′ 6= y], called 0-1 loss.

Default

many more other losses as we will see.

the expected risk of f is defined as

R(f) = E(x,y)∼PL(f(x), y).

For 0-1 loss we have

R(f) = E(x,y)∼PI[y′ 6= y]
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Some theory on NNC Step 2: The ideal classifier

Bayes optimal classifier

What should we predict for x, knowing P(y|x)?

Bayes optimal classifier: f∗(x) = argmaxc∈[C] P(c|x).

The optimal risk: R(f∗) = Ex∼Px [1−maxc∈[C] P(c|x)] where Px is the
marginal distribution of x.

That is we have R(f∗) ≤ R(f) for any f . Verify!

For special case C = 2, let η(x) = P(0|x), then

R(f∗) = Ex∼Px [Ey|x[If∗(x)6=y]]

= Ex∼Px [η(x)If∗(x)=1 + (1− η(x))If∗(x)=0]

= Ex∼Px [min{η(x), 1− η(x)}],
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Some theory on NNC Step 3: Comparing NNC to the ideal classifier

Comparing NNC to Bayes optimal classifier

Come back to the question: how good is NNC?

Theorem (Cover and Hart, 1967)

Let fN be the 1-nearest neighbor binary classifier using N training data
points, we have (under mild conditions)

R(f∗) ≤ lim
N→∞

E[R(fN )] ≤ 2R(f∗)

i.e., expected risk of NNC in the limit is at most twice of the best possible.

A pretty strong guarantee.
In particular, R(f∗) = 0 implies E[R(fN )]→ 0.
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Some theory on NNC Step 3: Comparing NNC to the ideal classifier

Proof sketch

Fact: xnn(x)
→ x as N →∞ with probability 1

E[R(fN )] = E[E(x,y)∼PI[fN (x) 6= y]]

→ Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ 6= y]]

= Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ = 0 and y = 1] + I[y′ = 1 and y = 0]]

= Ex∼Px [η(x)(1− η(x)) + (1− η(x))η(x)]

= 2Ex∼Px [η(x)(1− η(x))]

≤ 2Ex∼Px [min{η(x), (1− η(x))}]
= 2R(f∗)

42 / 42



Some theory on NNC Step 3: Comparing NNC to the ideal classifier

Proof sketch

Fact: xnn(x)
→ x as N →∞ with probability 1

E[R(fN )] = E[E(x,y)∼PI[fN (x) 6= y]]

→ Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ 6= y]]

= Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ = 0 and y = 1] + I[y′ = 1 and y = 0]]

= Ex∼Px [η(x)(1− η(x)) + (1− η(x))η(x)]

= 2Ex∼Px [η(x)(1− η(x))]

≤ 2Ex∼Px [min{η(x), (1− η(x))}]
= 2R(f∗)

42 / 42



Some theory on NNC Step 3: Comparing NNC to the ideal classifier

Proof sketch

Fact: xnn(x)
→ x as N →∞ with probability 1

E[R(fN )] = E[E(x,y)∼PI[fN (x) 6= y]]

→ Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ 6= y]]

= Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ = 0 and y = 1] + I[y′ = 1 and y = 0]]

= Ex∼Px [η(x)(1− η(x)) + (1− η(x))η(x)]

= 2Ex∼Px [η(x)(1− η(x))]

≤ 2Ex∼Px [min{η(x), (1− η(x))}]
= 2R(f∗)

42 / 42



Some theory on NNC Step 3: Comparing NNC to the ideal classifier

Proof sketch

Fact: xnn(x)
→ x as N →∞ with probability 1

E[R(fN )] = E[E(x,y)∼PI[fN (x) 6= y]]

→ Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ 6= y]]

= Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ = 0 and y = 1] + I[y′ = 1 and y = 0]]

= Ex∼Px [η(x)(1− η(x)) + (1− η(x))η(x)]

= 2Ex∼Px [η(x)(1− η(x))]

≤ 2Ex∼Px [min{η(x), (1− η(x))}]
= 2R(f∗)

42 / 42



Some theory on NNC Step 3: Comparing NNC to the ideal classifier

Proof sketch

Fact: xnn(x)
→ x as N →∞ with probability 1

E[R(fN )] = E[E(x,y)∼PI[fN (x) 6= y]]

→ Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ 6= y]]

= Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ = 0 and y = 1] + I[y′ = 1 and y = 0]]

= Ex∼Px [η(x)(1− η(x)) + (1− η(x))η(x)]

= 2Ex∼Px [η(x)(1− η(x))]

≤ 2Ex∼Px [min{η(x), (1− η(x))}]
= 2R(f∗)

42 / 42



Some theory on NNC Step 3: Comparing NNC to the ideal classifier

Proof sketch

Fact: xnn(x)
→ x as N →∞ with probability 1

E[R(fN )] = E[E(x,y)∼PI[fN (x) 6= y]]

→ Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ 6= y]]

= Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ = 0 and y = 1] + I[y′ = 1 and y = 0]]

= Ex∼Px [η(x)(1− η(x)) + (1− η(x))η(x)]

= 2Ex∼Px [η(x)(1− η(x))]

≤ 2Ex∼Px [min{η(x), (1− η(x))}]
= 2R(f∗)

42 / 42



Some theory on NNC Step 3: Comparing NNC to the ideal classifier

Proof sketch

Fact: xnn(x)
→ x as N →∞ with probability 1

E[R(fN )] = E[E(x,y)∼PI[fN (x) 6= y]]

→ Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ 6= y]]

= Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ = 0 and y = 1] + I[y′ = 1 and y = 0]]

= Ex∼Px [η(x)(1− η(x)) + (1− η(x))η(x)]

= 2Ex∼Px [η(x)(1− η(x))]

≤ 2Ex∼Px [min{η(x), (1− η(x))}]

= 2R(f∗)

42 / 42



Some theory on NNC Step 3: Comparing NNC to the ideal classifier

Proof sketch

Fact: xnn(x)
→ x as N →∞ with probability 1

E[R(fN )] = E[E(x,y)∼PI[fN (x) 6= y]]

→ Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ 6= y]]

= Ex∼PxEy,y′
i.i.d.∼ P(·|x)

[I[y′ = 0 and y = 1] + I[y′ = 1 and y = 0]]

= Ex∼Px [η(x)(1− η(x)) + (1− η(x))η(x)]

= 2Ex∼Px [η(x)(1− η(x))]

≤ 2Ex∼Px [min{η(x), (1− η(x))}]
= 2R(f∗)
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