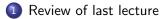
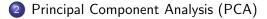
CSCI567 Machine Learning (Spring 2021)

Sirisha Rambhatla

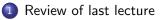
University of Southern California

March 31, 2021





Outline



Bayes optimal classifier

Suppose (x, y) is drawn from a joint distribution p. The **Bayes optimal** classifier is

$$f^*(\boldsymbol{x}) = \operatorname*{argmax}_{c \in [\mathsf{C}]} p(c \mid \boldsymbol{x})$$

i.e. predict the class with the largest conditional probability.

p is of course unknown, but we can estimate it, which is *exactly a density estimation problem*!

A "naive" assumption

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{\mathsf{D}} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

- use x = (Height, Vocabulary) to predict y = Age
- Height and Vocabulary are dependent
- but condition on Age, they are independent!

More often this assumption is *unrealistic and "naive*", but still Naive Bayes can work very well even if the assumption is wrong.

Outline

- Principal Component Analysis (PCA)
 PCA
 - Kernel PCA

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning problem.

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning problem.

Goal: reduce the dimensionality of a dataset so

• it is easier to visualize and discover patterns

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning problem.

Goal: reduce the dimensionality of a dataset so

- it is easier to visualize and discover patterns
- it takes less time and space to process for any applications (classification, regression, clustering, etc)

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning problem.

Goal: reduce the dimensionality of a dataset so

- it is easier to visualize and discover patterns
- it takes less time and space to process for any applications (classification, regression, clustering, etc)
- noise is reduced
- • •

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning problem.

Goal: reduce the dimensionality of a dataset so

- it is easier to visualize and discover patterns
- it takes less time and space to process for any applications (classification, regression, clustering, etc)
- noise is reduced
- • •

There are many approaches, we focus on a linear method: Principal Component Analysis (PCA)

picture from here

Consider the following dataset:

• 17 features, each represents the average consumption of some food

375	135	458	475
57	47	53	73
245	267	242	227
1472	1494	1462	1582
105	66	103	103
54	41	62	64
193	209	184	235
147	93	122	160
1102	674	957	1137
720	1033	566	874
253	143	171	265
685	586	750	803
488	355	418	570
198	187	220	203
360	334	337	365
1374	1506	1572	12 <mark>56</mark>
156	139	147	175
	57 245 147 105 54 193 147 102 720 720 253 685 488 198 360 137	57 47 245 267 147 149 105 66 54 41 193 209 147 93 102 674 720 1033 253 143 685 586 198 187 360 334 133 4	57 47 53 245 267 242 1472 149 1462 105 68 103 54 41 62 193 209 184 147 93 122 102 674 957 720 1033 566 253 143 171 685 586 750 488 355 418 198 187 220 360 334 337 1374 1506 1572

picture from here

Consider the following dataset:

- 17 features, each represents the average consumption of some food
- 4 data points, each represents some country

Alcoholic drinks	375	135	458	475
Beverages	57	47	53	73
Carcase meat	245	267	242	227
Cereals	1472	1494	1462	1582
Cheese	105	66	103	103
Confectionery	54	41	62	64
Fats and oils	193	209	184	235
Fish	147	93	122	160
Fresh fruit	<mark>1</mark> 102	674	957	1137
Fresh potatoes	720	1033	566	874
Fresh Veg	253	143	171	265
Other meat	685	586	750	803
Other Veg	488	355	418	570
Processed potatoes	198	187	220	203
Processed Veg	360	334	337	365
Soft drinks	1374	1506	1572	12 <mark>56</mark>
Sugars	156	139	147	175

picture from here

Consider the following dataset:

- 17 features, each represents the average consumption of some food
- 4 data points, each represents some country

Alcoholic drinks	375	135	458	475
Beverages	57	47	53	73
Carcase meat	245	267	242	227
Cereals	1472	1494	1462	1582
Cheese	105	66	103	103
Confectionery	54	41	62	64
Fats and oils	193	209	184	235
Fish	147	93	122	160
Fresh fruit	<mark>1</mark> 102	674	957	1137
Fresh potatoes	720	1033	566	874
Fresh Veg	253	143	171	265
Other meat	685	586	750	803
Other Veg	488	355	418	570
Processed potatoes	198	187	220	203
Processed Veg	360	334	337	365
Soft drinks	1374	1506	1572	12 <mark>56</mark>
Sugars	156	139	147	175

What can you tell?

picture from here

Consider the following dataset:

- 17 features, each represents the average consumption of some food
- 4 data points, each represents some country

Alcoholic drinks	375	135	458	475
Beverages	57	47	53	73
Carcase meat	245	267	242	227
Cereals	1472	1494	1462	1582
Cheese	105	66	103	103
Confectionery	54	41	62	64
Fats and oils	193	209	184	235
Fish	147	93	122	160
Fresh fruit	<mark>1</mark> 102	674	957	<mark>1</mark> 137
Fresh potatoes	720	1033	566	874
Fresh Veg	253	143	171	265
Other meat	685	586	750	803
Other Veg	488	355	418	570
Processed potatoes	198	187	220	203
Processed Veg	360	334	337	365
Soft drinks	1374	1506	1572	12 <mark>56</mark>
Sugars	156	139	147	175

What can you tell?

Hard to say anything looking at all these 17 features.

picture from here

PCA can help us!

PCA can help us! Plot along the first principal component of this dataset:

i.e. we reduce the dimensionality from 17 to just 1.

PCA can help us! Plot along the first principal component of this dataset:

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!

picture from here

PCA can help us! Plot along the first principal component of this dataset:

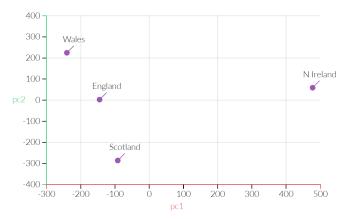
i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on the island of Great Britain out of the 4 samples.

picture from here

PCA can find the **second (and more) principal component** of the data too:



High level idea

How does PCA find these principal components (PC)?

High level idea

How does PCA find these principal components (PC)?

The first PC is in fact **the direction with the most variance**, i.e. the direction where the data is most spread out.

More formally, we want to find a direction $v \in \mathbb{R}^{D}$ with $||v||_{2} = 1$, so that the projection of the dataset on this direction has the most variance,

More formally, we want to find a direction $v \in \mathbb{R}^{D}$ with $||v||_{2} = 1$, so that the projection of the dataset on this direction has the most variance, i.e.

$$\max_{\boldsymbol{v}:\|\boldsymbol{v}\|_2=1}\sum_{n=1}^N \left(\boldsymbol{x}_n^{\mathrm{T}}\boldsymbol{v} - \frac{1}{N}\sum_m \boldsymbol{x}_m^{\mathrm{T}}\boldsymbol{v}\right)^2$$

More formally, we want to find a direction $v \in \mathbb{R}^{D}$ with $||v||_{2} = 1$, so that the projection of the dataset on this direction has the most variance, i.e.

$$\max_{\boldsymbol{v}:\|\boldsymbol{v}\|_2=1}\sum_{n=1}^N \left(\boldsymbol{x}_n^{\mathrm{T}}\boldsymbol{v} - \frac{1}{N}\sum_m \boldsymbol{x}_m^{\mathrm{T}}\boldsymbol{v}\right)^2$$

• $\boldsymbol{x}_n^{\mathrm{T}} \boldsymbol{v}$ is exactly the projection of \boldsymbol{x}_n onto the direction \boldsymbol{v}

More formally, we want to find a direction $v \in \mathbb{R}^{D}$ with $||v||_{2} = 1$, so that the projection of the dataset on this direction has the most variance, i.e.

$$\max_{\boldsymbol{v}:\|\boldsymbol{v}\|_2=1}\sum_{n=1}^N \left(\boldsymbol{x}_n^{\mathrm{T}}\boldsymbol{v} - \frac{1}{N}\sum_m \boldsymbol{x}_m^{\mathrm{T}}\boldsymbol{v}\right)^2$$

• $m{x}_n^{\mathrm{T}}m{v}$ is exactly the projection of $m{x}_n$ onto the direction $m{v}$

• if we pre-center the data, i.e. let $x'_n = x_n - \frac{1}{N} \sum_m x_m$, then the objective simply becomes

$$\max_{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1}\sum_{n=1}^{N}\left(\boldsymbol{x}_{n}^{\prime}{}^{\mathrm{T}}\boldsymbol{v}\right)^{2}$$

More formally, we want to find a direction $v \in \mathbb{R}^{D}$ with $||v||_{2} = 1$, so that the projection of the dataset on this direction has the most variance, i.e.

$$\max_{\boldsymbol{v}:\|\boldsymbol{v}\|_2=1}\sum_{n=1}^N \left(\boldsymbol{x}_n^{\mathrm{T}}\boldsymbol{v} - \frac{1}{N}\sum_m \boldsymbol{x}_m^{\mathrm{T}}\boldsymbol{v}\right)^2$$

- $m{x}_n^{\mathrm{T}}m{v}$ is exactly the projection of $m{x}_n$ onto the direction $m{v}$
- if we pre-center the data, i.e. let $x'_n = x_n \frac{1}{N}\sum_m x_m$, then the objective simply becomes

$$\max_{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1}\sum_{n=1}^{N}\left(\boldsymbol{x}_{n}^{\prime}{}^{\mathrm{T}}\boldsymbol{v}\right)^{2}=\max_{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1}\boldsymbol{v}^{\mathrm{T}}\left(\sum_{n=1}^{N}\boldsymbol{x}_{n}^{\prime}\boldsymbol{x}_{n}^{\prime}{}^{\mathrm{T}}\right)\boldsymbol{v}$$

More formally, we want to find a direction $v \in \mathbb{R}^{D}$ with $||v||_{2} = 1$, so that the projection of the dataset on this direction has the most variance, i.e.

$$\max_{\boldsymbol{v}:\|\boldsymbol{v}\|_2=1}\sum_{n=1}^N \left(\boldsymbol{x}_n^{\mathrm{T}}\boldsymbol{v} - \frac{1}{N}\sum_m \boldsymbol{x}_m^{\mathrm{T}}\boldsymbol{v}\right)^2$$

- $m{x}_n^{\mathrm{T}}m{v}$ is exactly the projection of $m{x}_n$ onto the direction $m{v}$
- if we pre-center the data, i.e. let $x'_n = x_n \frac{1}{N}\sum_m x_m$, then the objective simply becomes

$$\max_{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1}\sum_{n=1}^{N}\left(\boldsymbol{x}_{n}^{\prime}{}^{\mathrm{T}}\boldsymbol{v}\right)^{2}=\max_{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1}\boldsymbol{v}^{\mathrm{T}}\left(\sum_{n=1}^{N}\boldsymbol{x}_{n}^{\prime}\boldsymbol{x}_{n}^{\prime}{}^{\mathrm{T}}\right)\boldsymbol{v}$$

• we will simply assume $\{x_n\}$ is centered (to avoid notation x'_n)

With $oldsymbol{X} \in \mathbb{R}^{N imes \mathsf{D}}$ being the data matrix, we want

$$\max_{\boldsymbol{v}: \|\boldsymbol{v}\|_2 = 1} \boldsymbol{v}^{\mathrm{T}} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \right) \boldsymbol{v}$$

With $oldsymbol{X} \in \mathbb{R}^{N imes \mathsf{D}}$ being the data matrix, we want

$$\max_{oldsymbol{v}: \|oldsymbol{v}\|_2 = 1} oldsymbol{v}^{\mathrm{T}}\left(oldsymbol{X}^{\mathrm{T}}oldsymbol{X}
ight)oldsymbol{v}$$

The Lagrangian is

$$\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{v} - \lambda(\|\boldsymbol{v}\|_{2}^{2} - 1)$$

With $\boldsymbol{X} \in \mathbb{R}^{N \times \mathsf{D}}$ being the data matrix, we want

$$\max_{oldsymbol{v}:\|oldsymbol{v}\|_2=1}oldsymbol{v}^{\mathrm{T}}\left(oldsymbol{X}^{\mathrm{T}}oldsymbol{X}
ight)oldsymbol{v}$$

The Lagrangian is

$$\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{v} - \lambda(\|\boldsymbol{v}\|_{2}^{2} - 1)$$

The stationary condition implies $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{v} = \lambda \boldsymbol{v}$,

With $\boldsymbol{X} \in \mathbb{R}^{N imes \mathsf{D}}$ being the data matrix, we want

$$\max_{oldsymbol{v}: \|oldsymbol{v}\|_2 = 1} oldsymbol{v}^{\mathrm{T}}\left(oldsymbol{X}^{\mathrm{T}}oldsymbol{X}
ight)oldsymbol{v}$$

The Lagrangian is

$$\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{v} - \lambda(\|\boldsymbol{v}\|_{2}^{2} - 1)$$

The stationary condition implies $X^{T}Xv = \lambda v$, which means v is exactly an eigenvector!

With $\boldsymbol{X} \in \mathbb{R}^{N imes \mathsf{D}}$ being the data matrix, we want

$$\max_{oldsymbol{v}: \|oldsymbol{v}\|_2 = 1} oldsymbol{v}^{\mathrm{T}}\left(oldsymbol{X}^{\mathrm{T}}oldsymbol{X}
ight)oldsymbol{v}$$

The Lagrangian is

$$\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{v}-\lambda(\|\boldsymbol{v}\|_{2}^{2}-1)$$

The stationary condition implies $X^T X v = \lambda v$, which means v is exactly an eigenvector! And the objective becomes

$$\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{v}=\lambda\boldsymbol{v}^{\mathrm{T}}\boldsymbol{v}=\lambda$$

With $\boldsymbol{X} \in \mathbb{R}^{N imes \mathsf{D}}$ being the data matrix, we want

$$\max_{oldsymbol{v}:\|oldsymbol{v}\|_2=1}oldsymbol{v}^{\mathrm{T}}\left(oldsymbol{X}^{\mathrm{T}}oldsymbol{X}
ight)oldsymbol{v}$$

The Lagrangian is

$$\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{v}-\lambda(\|\boldsymbol{v}\|_{2}^{2}-1)$$

The stationary condition implies $X^T X v = \lambda v$, which means v is exactly an eigenvector! And the objective becomes

$$\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{v} = \lambda \boldsymbol{v}^{\mathrm{T}}\boldsymbol{v} = \lambda$$

To maximize this, we want the eigenvector with the largest eigenvalue

With $\boldsymbol{X} \in \mathbb{R}^{N imes \mathsf{D}}$ being the data matrix, we want

$$\max_{oldsymbol{v}:\|oldsymbol{v}\|_2=1}oldsymbol{v}^{\mathrm{T}}\left(oldsymbol{X}^{\mathrm{T}}oldsymbol{X}
ight)oldsymbol{v}$$

The Lagrangian is

$$\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{v} - \lambda(\|\boldsymbol{v}\|_{2}^{2} - 1)$$

The stationary condition implies $X^T X v = \lambda v$, which means v is exactly an eigenvector! And the objective becomes

$$\boldsymbol{v}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{v} = \lambda \boldsymbol{v}^{\mathrm{T}}\boldsymbol{v} = \lambda$$

To maximize this, we want the eigenvector with the largest eigenvalue

Conclusion: the first PC is the top eigenvector of the covariance matrix

Finding the other PCs

If v_1 is the first PC, then the second PC is found via

$$\max_{\boldsymbol{v}_{2}:\|\boldsymbol{v}_{2}\|_{2}=1, \boldsymbol{v}_{1}^{\mathrm{T}}\boldsymbol{v}_{2}=0}\boldsymbol{v}_{2}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{v}_{2}$$

i.e. the direction that maximizes the variance among all other dimensions

Finding the other PCs

If v_1 is the first PC, then the second PC is found via

$$\max_{\boldsymbol{v}_{2}:\|\boldsymbol{v}_{2}\|_{2}=1,\boldsymbol{v}_{1}^{\mathrm{T}}\boldsymbol{v}_{2}=0}\boldsymbol{v}_{2}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{v}_{2}$$

i.e. the direction that maximizes the variance among all other dimensions

This is just the second top eigenvector of the covariance matrix!

Finding the other PCs

If v_1 is the first PC, then the second PC is found via

$$\max_{\boldsymbol{v}_{2}:\|\boldsymbol{v}_{2}\|_{2}=1,\boldsymbol{v}_{1}^{\mathrm{T}}\boldsymbol{v}_{2}=0}\boldsymbol{v}_{2}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\boldsymbol{v}_{2}$$

i.e. the direction that maximizes the variance among all other dimensions

This is just the second top eigenvector of the covariance matrix!

Conclusion: the *d*-th principal component is the *d*-th eigenvector (sorted by the eigenvalue from largest to smallest).

Input: a dataset represented as $\boldsymbol{X}\text{, }\#\text{components }p$

Input: a dataset represented as ${oldsymbol X}$, $\# {\rm components} \ p$

Step 1 Center the data by subtracting the mean

Input: a dataset represented as \boldsymbol{X} , #components p

Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance matrix $X^T X$, denote it by $V \in \mathbb{R}^{D \times p}$

Input: a dataset represented as \boldsymbol{X} , #components p

Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance matrix $X^T X$, denote it by $V \in \mathbb{R}^{D \times p}$

Step 3 Construct the new compressed dataset $oldsymbol{XV} \in \mathbb{R}^{N imes p}$

One common rule: pick p large enough so it covers about 90% of the spectrum,

One common rule: pick p large enough so it covers about 90% of the spectrum, i.e.

$$\frac{\sum_{d=1}^{p} \lambda_d}{\sum_{d=1}^{\mathsf{D}} \lambda_d} \ge 90\%$$

where $\lambda_1 \geq \cdots \geq \lambda_N$ are sorted eigenvalues.

One common rule: pick p large enough so it covers about 90% of the spectrum, i.e.

$$\frac{\sum_{d=1}^{p} \lambda_d}{\sum_{d=1}^{\mathsf{D}} \lambda_d} \ge 90\%$$

where $\lambda_1 \geq \cdots \geq \lambda_N$ are sorted eigenvalues.

Note: $\sum_{d=1}^{D} \lambda_d = \text{Tr}(\boldsymbol{X}^T \boldsymbol{X})$, so no need to actually find all eigenvalues.

One common rule: pick p large enough so it covers about 90% of the spectrum, i.e.

$$\frac{\sum_{d=1}^{p} \lambda_d}{\sum_{d=1}^{\mathsf{D}} \lambda_d} \ge 90\%$$

where $\lambda_1 \geq \cdots \geq \lambda_N$ are sorted eigenvalues.

Note: $\sum_{d=1}^{D} \lambda_d = \text{Tr}(\boldsymbol{X}^T \boldsymbol{X})$, so no need to actually find all eigenvalues.

For visualization, also often pick p = 1 or p = 2.

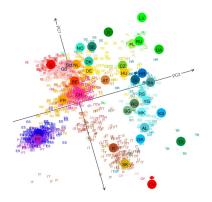
Another visualization example

- A famous study of genetic map
 - dataset: genomes of 1,387 Europeans

Another visualization example

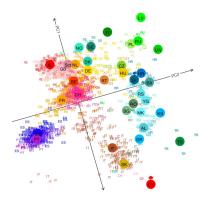
A famous study of genetic map

- dataset: genomes of 1,387 Europeans
- First 2 PCs shown below;



Another visualization example

- A famous study of genetic map
 - dataset: genomes of 1,387 Europeans
 - First 2 PCs shown below; *looks remarkably like the geographic map*



Does PCA always work?

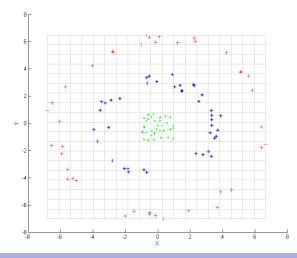
picture from Wikipedia

PCA is a linear method (recall the new dataset is XV),

Does PCA always work?

picture from Wikipedia

PCA is a **linear method** (recall the new dataset is XV), it does not do much when every direction has similar variance.



KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, *we can apply kernel methods*.

KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, we can apply kernel methods.

Kernel PCA (KPCA):

• first map the data to a more complicated space via $\phi: \mathbb{R}^\mathsf{D} o \mathbb{R}^M$

KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, *we can apply kernel methods*.

Kernel PCA (KPCA):

- first map the data to a more complicated space via $\phi:\mathbb{R}^\mathsf{D} o \mathbb{R}^M$
- then apply regular PCA to reduce the dimensionality

KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, *we can apply kernel methods*.

Kernel PCA (KPCA):

- first map the data to a more complicated space via $\phi:\mathbb{R}^\mathsf{D} o \mathbb{R}^M$
- then apply regular PCA to reduce the dimensionality

Sounds a bit counter-intuitive, but the key is this gives a nonlinear method.

KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, *we can apply kernel methods*.

Kernel PCA (KPCA):

- first map the data to a more complicated space via $\phi: \mathbb{R}^\mathsf{D} o \mathbb{R}^M$
- then apply regular PCA to reduce the dimensionality

Sounds a bit counter-intuitive, but the key is this gives a nonlinear method.

How to implement KPCA efficiently without actually working in \mathbb{R}^M ?

KPCA: finding the PCs

Suppose $\boldsymbol{v} \in \mathbb{R}^M$ is the first PC for the nonlinearly-transformed data $\mathbf{\Phi} \in \mathbb{R}^{N imes M}$ (centered).

Suppose $v \in \mathbb{R}^M$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then let

$$oldsymbol{v} = rac{1}{\lambda} oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{\Phi} oldsymbol{v}$$

Suppose $v \in \mathbb{R}^M$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then let

$$oldsymbol{v} = rac{1}{\lambda} oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{\Phi} oldsymbol{v} = oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{lpha}$$

for some $oldsymbol{lpha} \in \mathbb{R}^N$,

Suppose $v \in \mathbb{R}^M$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then let

$$oldsymbol{v} = rac{1}{\lambda} oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{\Phi} oldsymbol{v} = oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{lpha}$$

for some $\boldsymbol{\alpha} \in \mathbb{R}^N$, i.e. it's a linear combination of data.

Suppose $v \in \mathbb{R}^M$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then let

$$\boldsymbol{v} = \frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$

for some $\boldsymbol{\alpha} \in \mathbb{R}^N$, i.e. it's a linear combination of data.

Plugging into $\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \boldsymbol{v} = \lambda \boldsymbol{v}$ gives

$$\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha} = \lambda \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$

Suppose $v \in \mathbb{R}^M$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then let

$$\boldsymbol{v} = \frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$

for some $\boldsymbol{\alpha} \in \mathbb{R}^N$, i.e. it's a linear combination of data.

Plugging into $\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \boldsymbol{v} = \lambda \boldsymbol{v}$ gives

$$\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha} = \lambda \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$

and thus with the Gram matrix $oldsymbol{K} = oldsymbol{\Phi} oldsymbol{\Phi}^{\mathrm{T}}$,

$$\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{K}\boldsymbol{\alpha}-\lambda\boldsymbol{\alpha})=0.$$

Suppose $v \in \mathbb{R}^M$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then let

$$\boldsymbol{v} = \frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$

for some $oldsymbol{lpha} \in \mathbb{R}^N$, i.e. it's a linear combination of data.

.

Plugging into $\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \boldsymbol{v} = \lambda \boldsymbol{v}$ gives

$$\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha} = \lambda \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$

and thus with the Gram matrix $oldsymbol{K} = oldsymbol{\Phi} oldsymbol{\Phi}^{\mathrm{T}}$,

$$\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{K}\boldsymbol{\alpha}-\lambda\boldsymbol{\alpha})=0.$$

So α is an eigenvector of K!

Suppose $v \in \mathbb{R}^M$ is the first PC for the nonlinearly-transformed data $\Phi \in \mathbb{R}^{N \times M}$ (centered). Then let

$$\boldsymbol{v} = \frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{v} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$

for some $oldsymbol{lpha} \in \mathbb{R}^N$, i.e. it's a linear combination of data.

Plugging into $\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \boldsymbol{v} = \lambda \boldsymbol{v}$ gives

$$\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha} = \lambda \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$

and thus with the Gram matrix $oldsymbol{K} = oldsymbol{\Phi} oldsymbol{\Phi}^{\mathrm{T}}$,

$$\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{K}\boldsymbol{\alpha}-\lambda\boldsymbol{\alpha})=0.$$

So α is an eigenvector of K!

Conclusion: KPCA is just finding top eigenvectors of the Gram matrix

One issue: scaling

Should we scale α s.t $\|\alpha\|_2 = 1$?

One issue: scaling

Should we scale α s.t $\|\alpha\|_2 = 1$?

No. Recall we want $v = \Phi^{T} \alpha$ to have unit L2 norm.

One issue: scaling

Should we scale α s.t $\|\alpha\|_2 = 1$?

No. Recall we want $oldsymbol{v} = oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{lpha}$ to have unit L2 norm, so

$$\boldsymbol{v}^{\mathrm{T}}\boldsymbol{v} = \boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\alpha} = \lambda \|\boldsymbol{\alpha}\|_{2}^{2} = 1$$

One issue: scaling

Should we scale α s.t $\|\alpha\|_2 = 1$?

No. Recall we want $oldsymbol{v} = oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{lpha}$ to have unit L2 norm, so

$$\boldsymbol{v}^{\mathrm{T}}\boldsymbol{v} = \boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\alpha} = \lambda \|\boldsymbol{\alpha}\|_{2}^{2} = 1$$

In other words, we in fact need to scale α so that its L2 norm is $1/\sqrt{\lambda}$, where λ it's the corresponding eigenvalue.

Another issue: centering

Should we still pre-center X?

Another issue: centering

Should we still pre-center X?

No. Centering X does not mean Φ is centered!

Another issue: centering

Should we still pre-center X?

No. Centering X does not mean Φ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after Φ is centered?

Another issue: centering

Should we still pre-center X?

No. Centering X does not mean Φ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after Φ is centered?

Another issue: centering

Should we still pre-center X?

No. Centering X does not mean Φ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after Φ is centered?

$$\bar{K} = (\Phi - E\Phi)(\Phi - E\Phi)^{\mathrm{T}}$$

Another issue: centering

Should we still pre-center X?

No. Centering X does not mean Φ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after Φ is centered?

$$\bar{\boldsymbol{K}} = (\boldsymbol{\Phi} - \boldsymbol{E}\boldsymbol{\Phi})(\boldsymbol{\Phi} - \boldsymbol{E}\boldsymbol{\Phi})^{\mathrm{T}}$$
$$= \boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} - \boldsymbol{E}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} - \boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{E} + \boldsymbol{E}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{E}$$

Another issue: centering

Should we still pre-center X?

No. Centering X does not mean Φ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after Φ is centered?

$$\bar{K} = (\Phi - E\Phi)(\Phi - E\Phi)^{\mathrm{T}}$$
$$= \Phi\Phi^{\mathrm{T}} - E\Phi\Phi^{\mathrm{T}} - \Phi\Phi^{\mathrm{T}}E + E\Phi\Phi^{\mathrm{T}}E$$
$$= K - EK - KE + EKE$$

KPCA

Input: a dataset \boldsymbol{X} , #components p, a Kernel function k

Input: a dataset \boldsymbol{X} , #components p, a Kernel function k

Step 1 Compute the Gram matrix K and the centered Gram matrix

$$ar{K} = K - EK - KE + EKE$$

Input: a dataset \boldsymbol{X} , #components p, a Kernel function k

Step 1 Compute the Gram matrix K and the centered Gram matrix

$$ar{K} = K - EK - KE + EKE$$

Step 2 Find the top p eigenvectors of \bar{K} with the appropriate scaling, denote it by $A \in \mathbb{R}^{N \times p}$

Input: a dataset \boldsymbol{X} , #components p, a Kernel function k

Step 1 Compute the Gram matrix K and the centered Gram matrix

$$ar{K} = K - EK - KE + EKE$$

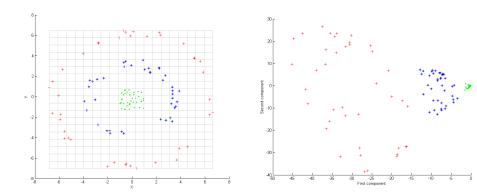
Step 2 Find the top *p* eigenvectors of \bar{K} with the appropriate scaling, denote it by $A \in \mathbb{R}^{N \times p}$

Step 3 Construct the new dataset $(\Phi - E \Phi) (\Phi - E \Phi)^{\mathrm{T}} A = ar{K} A$

Example

picture from Wikipedia

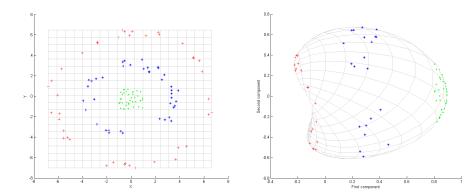
Applying kernel
$$k(\boldsymbol{x}, \boldsymbol{x}') = (\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}' + 1)^2$$
:



Example

picture from Wikipedia

Applying Gaussian kernel
$$k(m{x},m{x}') = \exp\left(rac{-\|m{x}-m{x}'\|^2}{2\sigma^2}
ight)$$
:



Denoising via PCA

Original data

1238567890

Data corrupted with Gaussian noise

Result after linear PCA

Result after kernel PCA. Gaussian kernel

