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Review of last lecture

Bayes optimal classifier

Suppose (x,y) is drawn from a joint distribution p. The Bayes optimal
classifier is

f*(x) = argmax p(c | )
celC]

i.e. predict the class with the largest conditional probability.

p is of course unknown, but we can estimate it, which is exactly a density
estimation problem!

4/26



Review of last lecture

A “naive” assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

D

ple|y=c)=]]plaly=rc)

d=1
Now for each d and ¢ we have a simple 1D density estimation problem!
Is this a reasonable assumption? Sometimes yes, e.g.
e use z = (Height, Vocabulary) to predict y = Age
@ Height and Vocabulary are dependent

@ but condition on Age, they are independent!

More often this assumption is unrealistic and “naive”, but still Naive Bayes

can work very well even if the assumption is wrong.
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© Principal Component Analysis (PCA)
e PCA
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Principal Component Analysis (PCA) PCA

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning
problem.

Goal: reduce the dimensionality of a dataset so
@ it is easier to visualize and discover patterns

@ it takes less time and space to process for any applications
(classification, regression, clustering, etc)

@ noise is reduced

There are many approaches, we focus on a linear method:
Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

Exam p|e picture from here

Consider the following dataset:

o 17 features, each represents the average consumption of some food

Alcoholic drinks . 375 I 135 - 458 - 475
Beverages | 57 ‘ 47 ‘ 53 | 73
Carcase meat [ | 245 [ 267 il 242 [ 227
Cerets Y T
Cheese 105 | 66| 103 103
Confectionery 54 41 | 62 | 64
Fats and oils 193 209 [l 184 235
Fish 147 93] 122 160
Fresh fruit w02 [ o7 N 957 [ 13/

Fresh potatoes 720 -1033 - 566 - 874
253 143 171 1 265
685 [ see | 7s0[ 0 03
a8 [ 3550 sl s
198 1 187 [l 220 i 203
ac0 [l 324 [ 337 [l 65

156 || 139 || 147 175

Fresh Veg

Other meat

Other Veg
Processed potatoes
Processed Veg

Soft drinks

Sugars
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Principal Component Analysis (PCA)

Exam p|e picture from here

Consider the following dataset:
o 17 features, each represents the average consumption of some food

@ 4 data points, each represents some country

Alcoholic drinks || 375 135 [l 458 [l 475

Beverages | 57 47 ‘ 53 | 73

Carcase meat [ | 245 [ 267 il 242 [ 227

Ceres [ v 5
Cheese | 105 | 66| 103 | 103 What can you tell’
Confectionery | 54 a1 62| 64

Fats and oils I 193 I 209 I 184 I 235 .

Fish 1 147 | 9 122 160 Hard to Say a nyth ng
Fresh fruit o B o+ [ o5/ N 2/ H

Fresh potatoes - 720 -I033 - 566 - 874 IOOkIng at a” these 17
Fresh Veg ] 253 143 ] 1710 265 features.
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Principal Component Analysis (PCA)

Example

picture from here

PCA can help us! Plot along the first principal component of this
dataset:

pcl \3 T X" T T T T T |
-300 -200 -100 0 100 200 300 400 500

A

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!
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Principal Component Analysis (PCA) PCA
Example

picture from here

PCA can help us! Plot along the first principal component of this
dataset:

Wales Engla{:d Scotland N Ireland

pcl o— *— & T L g

800 200 100 0 100 200 300 400 500
i.e. we reduce the dimensionality from 17 to just 1.
Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on
the island of Great Britain out of the 4 samples.
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Principal Component Analysis (PCA)

Exam p|e picture from here

PCA can find the second (and more) principal component of the data
too:

400~

300+ Wales

200

100 N Ireland

England

pcZ o 0 ./

-100+

-2004 Scotland

-300+ 'S

-400 T T T T T T T 1
300 200 -100 0 100 200 300 400 500
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High level idea

How does PCA find these principal components (PC)?

Wales  England Scotland N Ireland

pcl 7 O —@ T T T T T T
-300 -200 -100 0 100 200 300 400 500

The first PC is in fact the direction with the most variance, i.e. the
direction where the data is most spread out.
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Finding the first PC

More formally, we want to find a direction v € RP with |jv||2 = 1, so that
the projection of the dataset on this direction has the most variance, i.e.

N

2
1
max (mgv N Z m%v)
m

v:||v]j2=1 1

T

e,

v is exactly the projection of x,, onto the direction v

o if we pre-center the data, i.e. let &, = @, — % >_,,, T, then the
objective simply becomes

N

1T 2
max X v
viljvl2=1 =
n=1

12 /26



Principal Component Analysis (PCA) PCA

Finding the first PC

More formally, we want to find a direction v € RP with |jv||2 = 1, so that
the projection of the dataset on this direction has the most variance, i.e.

N

1 2
max Thv — — E )
v:||lv]2=1 “— N

n=1 m

T

e,

v is exactly the projection of x,, onto the direction v

o if we pre-center the data, i.e. let &, = @, — % >_,,, T, then the
objective simply becomes

N

9 N
;T _ T r 47T
max T, v|] = max v T, T, |v
v:||v]j2=1 —1
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Principal Component Analysis (PCA) PCA

Finding the first PC

More formally, we want to find a direction v € RP with |jv||2 = 1, so that
the projection of the dataset on this direction has the most variance, i.e.

N

1 2
max Thv — — E )
v:||lv]2=1 “— N

n=1 m

T

U is exactly the projection of x,, onto the direction v

(I 2

e if we pre-center the data, i.e. let ], = x,, — % > Tm, then the
objective simply becomes

N

9 N
1 T _ T ;) 4T
max x, v] = max v x,z, |v
vi||v[[2=1 “— vif|v]]2=1 —

n=1 n=1

e we will simply assume {x,} is centered (to avoid notation /)
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Finding the first PC

With X € RV*P being the data matrix, we want

max vl (XTX) v

vilvll2=1

The Lagrangian is
vt (XTX) v — )\(||v||% -1)

The stationary condition implies X T X v = \v, which means v is exactly
an eigenvector! And the objective becomes

vl (XTX)'v = \wlv =)\

To maximize this, we want the eigenvector with the largest eigenvalue
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Principal Component Analysis (PCA) PCA

Finding the first PC

With X € RV*P being the data matrix, we want

max vl (XTX) v

vilvll2=1

The Lagrangian is
vt (XTX) v — )\(||v]|% -1)

The stationary condition implies X T X v = \v, which means v is exactly
an eigenvector! And the objective becomes

vl (XTX) v=X"v =)\
To maximize this, we want the eigenvector with the largest eigenvalue

Conclusion: the first PC is the top eigenvector of the covariance matrix
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Principal Component Analysis (PCA) PCA

Finding the other PCs

If vy is the first PC, then the second PC is found via

max vy (XTX) ()

1}2:||’l}2||2=1,’l)}"02=0

i.e. the direction that maximizes the variance among all other dimensions

This is just the second top eigenvector of the covariance matrix!

Conclusion: the d-th principal component is the d-th eigenvector (sorted
by the eigenvalue from largest to smallest).
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Principal Component Analysis (PCA) PCA

PCA

Input: a dataset represented as X, #components p
Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance
matrix X T X, denote it by V € RDxp

Step 3 Construct the new compressed dataset XV e RV*»
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Principal Component Analysis (PCA) PCA

How many PCs do we want?

One common rule: pick p large enough so it covers about 90% of the
spectrum, i.e.
P
Cé=71d > 90%
d=1d

where A1 > --- > Ay are sorted eigenvalues.

Note: S0 Ay = Tr(XTX), so no need to actually find all eigenvalues.
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Principal Component Analysis (PCA) PCA

How many PCs do we want?

One common rule: pick p large enough so it covers about 90% of the
spectrum, i.e.

P
#71‘1290%
A
d=1"d

where A1 > --- > Ay are sorted eigenvalues.

Note: S0 Ay = Tr(XTX), so no need to actually find all eigenvalues.

For visualization, also often pick p =1 or p = 2.

16 / 26



Principal Component Analysis (PCA)

Another visualization example

A famous study of genetic map

o dataset: genomes of 1,387 Europeans



Principal Component Analysis (PCA)

Another visualization example

A famous study of genetic map
o dataset: genomes of 1,387 Europeans

@ First 2 PCs shown below:




Principal Component Analysis (PCA)

Another visualization example

A famous study of genetic map

o dataset: genomes of 1,387 Europeans

@ First 2 PCs shown below; looks remarkably like the geographic map
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Principal Component Analysis (PCA)

Does PCA a|wayS Work? picture from Wikipedia

PCA is a linear method (recall the new dataset is X V'), it does not do
much when every direction has similar variance.
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e first map the data to a more complicated space via ¢ : RP — RM
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KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, we can
apply kernel methods.

Kernel PCA (KPCA):
e first map the data to a more complicated space via ¢ : RP — RM

@ then apply regular PCA to reduce the dimensionality
Sounds a bit counter-intuitive, but the key is this gives a nonlinear method.

How to implement KPCA efficiently without actually working in RM ?

19 / 26
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KPCA: finding the PCs

Kernel PCA

Suppose v € RM is the first PC for the nonlinearly-transformed data
® ¢ RV*M (centered). Then let

1
v = X<I>T<I>v =T

for some a € RY, i.e. it's a linear combination of data.
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KPCA: finding the PCs

Suppose v € RM is the first PC for the nonlinearly-transformed data
® ¢ RV*M (centered). Then let

1
v = X<I>T<I>v =T

for some a € RY, i.e. it's a linear combination of data.

Plugging into ®T®v = \v gives
3137 = T
and thus with the Gram matrix K = ®®7,
®T(Ka—\a)=0.

So « is an eigenvector of K'!

Conclusion: KPCA is just finding top eigenvectors of the Gram matrix

20/ 26
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One issue: scaling

Should we scale o s.t ||a||2 =17

No. Recall we want v = ®T« to have unit L2 norm, so

viv=aT®dTa =)ol =1

In other words, we in fact need to scale « so that its L2 norm is 1/v/),
where ) it's the corresponding eigenvalue.
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Another issue: centering

Should we still pre-center X ?
No. Centering X does not mean @ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after ®
is centered?

Let E € RV*N be the matrix with all entries being %

K=(®—-E®)(®—- E®)T
= 33" — E®d" — PP 'E + EPP'E
—K-EK - KE+ EKE
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KPCA

Input: a dataset X, #components p, a Kernel function k&

Step 1 Compute the Gram matrix K and the centered Gram matrix

K=K -EK - KE+ EKE
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KPCA

Input: a dataset X, #components p, a Kernel function k&

Step 1 Compute the Gram matrix K and the centered Gram matrix

K=K -EK - KE+ EKE

Step 2 Find the top p eigenvectors of K with the appropriate scaling,
denote it by A € RN*P
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KPCA

Input: a dataset X, #components p, a Kernel function k&

Step 1 Compute the Gram matrix K and the centered Gram matrix

K=K -EK - KE+ EKE

Step 2 Find the top p eigenvectors of K with the appropriate scaling,
denote it by A € RN*P

Step 3 Construct the new dataset (& — E®)(® — E®)TA = KA

23 /26



Principal Component Analysis (PCA)

Exam p|e picture from Wikipedia

Applying kernel k(z, ') = (T2’ +1)%:
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Exam p|e picture from Wikipedia

—[le—a’||?

Applying Gaussian kernel k(x,z’') = exp
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Denoising via PCA

Original data

LU 2SN IOKA Z181910)

Data corrupted with Gaussian noise

B Bl raT DSe EES ke ST Bl RO
EE S NG N B S NS B Wl

Result after linear PCA

HEEdelZErEEE

Result after kernel PCA, Gaussian kernel

LI SIYIOR6] 7181710
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