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Review of last lecture

Bayes optimal classifier

Suppose (x, y) is drawn from a joint distribution p. The Bayes optimal
classifier is

f∗(x) = argmax
c∈[C]

p(c | x)

i.e. predict the class with the largest conditional probability.

p is of course unknown, but we can estimate it, which is exactly a density
estimation problem!
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Review of last lecture

A “naive” assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

p(x | y = c) =

D∏
d=1

p(xd | y = c)

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

use x = (Height, Vocabulary) to predict y = Age

Height and Vocabulary are dependent

but condition on Age, they are independent!

More often this assumption is unrealistic and “naive”, but still Naive Bayes
can work very well even if the assumption is wrong.
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Principal Component Analysis (PCA)

Outline

1 Review of last lecture

2 Principal Component Analysis (PCA)
PCA
Kernel PCA
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Principal Component Analysis (PCA) PCA

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning
problem.

Goal: reduce the dimensionality of a dataset so

it is easier to visualize and discover patterns

it takes less time and space to process for any applications
(classification, regression, clustering, etc)

noise is reduced

· · ·

There are many approaches, we focus on a linear method:
Principal Component Analysis (PCA)
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Principal Component Analysis (PCA) PCA

Example picture from here

Consider the following dataset:

17 features, each represents the average consumption of some food

4 data points, each represents some country

What can you tell?

Hard to say anything
looking at all these 17
features.
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Principal Component Analysis (PCA) PCA

Example picture from here

PCA can help us!

Plot along the first principal component of this
dataset:

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on
the island of Great Britain out of the 4 samples.
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Principal Component Analysis (PCA) PCA

Example picture from here

PCA can find the second (and more) principal component of the data
too:
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Principal Component Analysis (PCA) PCA

High level idea

How does PCA find these principal components (PC)?

The first PC is in fact the direction with the most variance, i.e. the
direction where the data is most spread out.
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Principal Component Analysis (PCA) PCA

Finding the first PC

More formally, we want to find a direction v ∈ RD with ‖v‖2 = 1, so that
the projection of the dataset on this direction has the most variance,

i.e.

max
v:‖v‖2=1

N∑
n=1

(
xT
nv −

1

N

∑
m

xT
mv

)2

xT
nv is exactly the projection of xn onto the direction v

if we pre-center the data, i.e. let x′n = xn − 1
N

∑
m xm, then the

objective simply becomes

max
v:‖v‖2=1

N∑
n=1

(
x′n

T
v
)2

= max
v:‖v‖2=1

vT

(
N∑
n=1

x′nx
′
n
T

)
v

we will simply assume {xn} is centered (to avoid notation x′n)
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Principal Component Analysis (PCA) PCA

Finding the first PC

With X ∈ RN×D being the data matrix, we want

max
v:‖v‖2=1

vT
(
XTX

)
v

The Lagrangian is
vT
(
XTX

)
v − λ(‖v‖22 − 1)

The stationary condition implies XTXv = λv, which means v is exactly
an eigenvector! And the objective becomes

vT
(
XTX

)
v = λvTv = λ

To maximize this, we want the eigenvector with the largest eigenvalue

Conclusion: the first PC is the top eigenvector of the covariance matrix
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Principal Component Analysis (PCA) PCA

Finding the other PCs

If v1 is the first PC, then the second PC is found via

max
v2:‖v2‖2=1,vT

1 v2=0
vT2
(
XTX

)
v2

i.e. the direction that maximizes the variance among all other dimensions

This is just the second top eigenvector of the covariance matrix!

Conclusion: the d-th principal component is the d-th eigenvector (sorted
by the eigenvalue from largest to smallest).
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Principal Component Analysis (PCA) PCA

PCA

Input: a dataset represented as X, #components p

Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance
matrix XTX, denote it by V ∈ RD×p

Step 3 Construct the new compressed dataset XV ∈ RN×p

15 / 26



Principal Component Analysis (PCA) PCA

PCA

Input: a dataset represented as X, #components p

Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance
matrix XTX, denote it by V ∈ RD×p

Step 3 Construct the new compressed dataset XV ∈ RN×p

15 / 26



Principal Component Analysis (PCA) PCA

PCA

Input: a dataset represented as X, #components p

Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance
matrix XTX, denote it by V ∈ RD×p

Step 3 Construct the new compressed dataset XV ∈ RN×p

15 / 26



Principal Component Analysis (PCA) PCA

PCA

Input: a dataset represented as X, #components p

Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance
matrix XTX, denote it by V ∈ RD×p

Step 3 Construct the new compressed dataset XV ∈ RN×p

15 / 26



Principal Component Analysis (PCA) PCA

How many PCs do we want?

One common rule: pick p large enough so it covers about 90% of the
spectrum,

i.e. ∑p
d=1 λd∑D
d=1 λd

≥ 90%

where λ1 ≥ · · · ≥ λN are sorted eigenvalues.

Note:
∑D

d=1 λd = Tr(XTX), so no need to actually find all eigenvalues.

For visualization, also often pick p = 1 or p = 2.
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Principal Component Analysis (PCA) PCA

Another visualization example

A famous study of genetic map

dataset: genomes of 1,387 Europeans

First 2 PCs shown below;

looks remarkably like the geographic map
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Principal Component Analysis (PCA) Kernel PCA

Does PCA always work? picture from Wikipedia

PCA is a linear method (recall the new dataset is XV ),

it does not do
much when every direction has similar variance.
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Principal Component Analysis (PCA) Kernel PCA

KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, we can
apply kernel methods.

Kernel PCA (KPCA):

first map the data to a more complicated space via φ : RD → RM

then apply regular PCA to reduce the dimensionality

Sounds a bit counter-intuitive, but the key is this gives a nonlinear method.

How to implement KPCA efficiently without actually working in RM?
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Principal Component Analysis (PCA) Kernel PCA

KPCA: finding the PCs

Suppose v ∈ RM is the first PC for the nonlinearly-transformed data
Φ ∈ RN×M (centered).

Then let

v =
1

λ
ΦTΦv = ΦTα

for some α ∈ RN , i.e. it’s a linear combination of data.

Plugging into ΦTΦv = λv gives

ΦTΦΦTα = λΦTα

and thus with the Gram matrix K = ΦΦT,

ΦT(Kα− λα) = 0.

So α is an eigenvector of K!

Conclusion: KPCA is just finding top eigenvectors of the Gram matrix
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Principal Component Analysis (PCA) Kernel PCA

One issue: scaling

Should we scale α s.t ‖α‖2 = 1?

No. Recall we want v = ΦTα to have unit L2 norm, so

vTv = αTΦΦTα = λ‖α‖22 = 1

In other words, we in fact need to scale α so that its L2 norm is 1/
√
λ,

where λ it’s the corresponding eigenvalue.
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Principal Component Analysis (PCA) Kernel PCA

Another issue: centering

Should we still pre-center X?

No. Centering X does not mean Φ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after Φ
is centered?

Let E ∈ RN×N be the matrix with all entries being 1
N ,

K̄ = (Φ−EΦ)(Φ−EΦ)T

= ΦΦT −EΦΦT −ΦΦTE +EΦΦTE

= K −EK −KE +EKE
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Principal Component Analysis (PCA) Kernel PCA

KPCA

Input: a dataset X, #components p, a Kernel function k

Step 1 Compute the Gram matrix K and the centered Gram matrix

K̄ = K −EK −KE +EKE

Step 2 Find the top p eigenvectors of K̄ with the appropriate scaling,
denote it by A ∈ RN×p

Step 3 Construct the new dataset (Φ−EΦ)(Φ−EΦ)TA = K̄A
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Principal Component Analysis (PCA) Kernel PCA

Example picture from Wikipedia

Applying kernel k(x,x′) = (xTx′ + 1)2:
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Example picture from Wikipedia

Applying Gaussian kernel k(x,x′) = exp
(
−‖x−x′‖2

2σ2

)
:
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Principal Component Analysis (PCA) Kernel PCA

Denoising via PCA
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