
CSCI-567 Machine Learning (Spring 2021)
Special Topics: Representation Learning and
Time-series Processing with Neural Networks

Nitin Kamra

University of Southern California

April 21, 2021

April 20, 2021 1 / 12

Acknowledgements

The materials borrow heavily from the following sources:

Chris Olah’s blog post on LSTMs: http:

//colah.github.io/posts/2015-08-Understanding-LSTMs/

Dr. Nasim Zolaktaf’s UBC lecture on recurrent neural networks:
https://www.cs.ubc.ca/labs/lci/mlrg/slides/rnn.pdf

Dr. Mitesh M. Khapra’s lectures on Deep Learning:
https://www.cse.iitm.ac.in/~miteshk/CS7015/Slides/

Teaching/pdf/Lecture7.pdf

April 20, 2021 2 / 12

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.cs.ubc.ca/labs/lci/mlrg/slides/rnn.pdf
https://www.cse.iitm.ac.in/~miteshk/CS7015/Slides/Teaching/pdf/Lecture7.pdf
https://www.cse.iitm.ac.in/~miteshk/CS7015/Slides/Teaching/pdf/Lecture7.pdf

Autoencoders

Outline

1 Autoencoders

2 Recurrent Neural Networks

April 20, 2021 3 / 12

Autoencoders

Introduction to Autoencoder

An autoencoder is a special type of

feedforward network which does the
following:

Encodes its input xi into a
hidden representation h

Decodes the input again from
this hidden representation h

The model is trained to minimize a
certain loss function which ensures
that x̂i is close to xi.

April 20, 2021 4 / 12

Autoencoders

Introduction to Autoencoder

An autoencoder is a special type of

feedforward network which does the
following:

Encodes its input xi into a
hidden representation h

Decodes the input again from
this hidden representation h

The model is trained to minimize a
certain loss function which ensures
that x̂i is close to xi.

April 20, 2021 4 / 12

Autoencoders

Introduction to Autoencoder

An autoencoder is a special type of

feedforward network which does the
following:

Encodes its input xi into a
hidden representation h

Decodes the input again from
this hidden representation h

The model is trained to minimize a
certain loss function which ensures
that x̂i is close to xi.

April 20, 2021 4 / 12

Autoencoders

Introduction to Autoencoder

An autoencoder is a special type of

feedforward network which does the
following:

Encodes its input xi into a
hidden representation h

Decodes the input again from
this hidden representation h

The model is trained to minimize a
certain loss function which ensures
that x̂i is close to xi.

April 20, 2021 4 / 12

Autoencoders

Introduction to Autoencoder

An autoencoder is a special type of

feedforward network which does the
following:

Encodes its input xi into a
hidden representation h

Decodes the input again from
this hidden representation h

The model is trained to minimize a
certain loss function which ensures
that x̂i is close to xi.

April 20, 2021 5 / 12

Autoencoders

Why autoencoders?

What should be the dimension of h?

If dim(h) ≥ dim(xi), then the
neural network can always
perfectly recover xi from h by
just copying its elements → Not
interesting!

If dim(h) < dim(xi), then the
neural network will have to
encode maximum information
from xi into h for an accurate
reconstruction!

April 20, 2021 6 / 12

Autoencoders

Why autoencoders?

What should be the dimension of h?

If dim(h) ≥ dim(xi), then the
neural network can always
perfectly recover xi from h by
just copying its elements → Not
interesting!

If dim(h) < dim(xi), then the
neural network will have to
encode maximum information
from xi into h for an accurate
reconstruction!

April 20, 2021 6 / 12

Autoencoders

Why autoencoders?

What should be the dimension of h?

If dim(h) ≥ dim(xi), then the
neural network can always
perfectly recover xi from h by
just copying its elements → Not
interesting!

If dim(h) < dim(xi), then the
neural network will have to
encode maximum information
from xi into h for an accurate
reconstruction!

April 20, 2021 6 / 12

Autoencoders

Why autoencoders?

Hence, one can use autoencoders for:

Representation learning

Dimensionality reduction

Finding hidden structure in data

Data compression

Clustering

Anomaly detection

April 20, 2021 7 / 12

Autoencoders

Choice of f and g

What should be the choice for

decoder activation f?

What if inputs are binary?

Answer: sigmoid

What if inputs are real-valued?

Answer: identity

What should be the choice for
encoder activation g?

Answer: Typically, g is chosen as the
sigmoid or tanh function to keep
embedding values (h) bounded and
introduce non-linearity.

April 20, 2021 8 / 12

Autoencoders

Choice of f and g

What should be the choice for

decoder activation f?

What if inputs are binary?

Answer: sigmoid

What if inputs are real-valued?

Answer: identity

What should be the choice for
encoder activation g?

Answer: Typically, g is chosen as the
sigmoid or tanh function to keep
embedding values (h) bounded and
introduce non-linearity.

April 20, 2021 8 / 12

Autoencoders

Choice of f and g

What should be the choice for

decoder activation f?

What if inputs are binary?

Answer: sigmoid

What if inputs are real-valued?

Answer: identity

What should be the choice for
encoder activation g?

Answer: Typically, g is chosen as the
sigmoid or tanh function to keep
embedding values (h) bounded and
introduce non-linearity.

April 20, 2021 8 / 12

Autoencoders

Choice of f and g

What should be the choice for

decoder activation f?

What if inputs are binary?

Answer: sigmoid

What if inputs are real-valued?

Answer: identity

What should be the choice for
encoder activation g?

Answer: Typically, g is chosen as the
sigmoid or tanh function to keep
embedding values (h) bounded and
introduce non-linearity.

April 20, 2021 8 / 12

Autoencoders

Choice of f and g

What should be the choice for

decoder activation f?

What if inputs are binary?

Answer: sigmoid

What if inputs are real-valued?

Answer: identity

What should be the choice for
encoder activation g?

Answer: Typically, g is chosen as the
sigmoid or tanh function to keep
embedding values (h) bounded and
introduce non-linearity.

April 20, 2021 8 / 12

Autoencoders

Choice of f and g

What should be the choice for

decoder activation f?

What if inputs are binary?

Answer: sigmoid

What if inputs are real-valued?

Answer: identity

What should be the choice for
encoder activation g?

Answer: Typically, g is chosen as the
sigmoid or tanh function to keep
embedding values (h) bounded and
introduce non-linearity.

April 20, 2021 8 / 12

Autoencoders

Choice of loss function

What should be the loss function to train an autoencoder?

Consider the case when inputs are real-valued:

The objective of the autoencoder is to reconstruct x̂i to be as close
to xi as possible.

This can be formalized using the following objective function:

min
W,W∗,c,b

1

m

m∑

i=1

n∑

j=1

(x̂ij − xij)
2

= min
W,W∗,c,b

1

m

m∑

i=1

(x̂i − xi)
T (x̂i − xi)

We can then train the autoencoder using back-propagation.

Homework question: What if the inputs were binary-valued?

April 20, 2021 9 / 12

Autoencoders

Choice of loss function

What should be the loss function to train an autoencoder?

Consider the case when inputs are real-valued:

The objective of the autoencoder is to reconstruct x̂i to be as close
to xi as possible.

This can be formalized using the following objective function:

min
W,W∗,c,b

1

m

m∑

i=1

n∑

j=1

(x̂ij − xij)
2

= min
W,W∗,c,b

1

m

m∑

i=1

(x̂i − xi)
T (x̂i − xi)

We can then train the autoencoder using back-propagation.

Homework question: What if the inputs were binary-valued?

April 20, 2021 9 / 12

Autoencoders

Choice of loss function

What should be the loss function to train an autoencoder?

Consider the case when inputs are real-valued:

The objective of the autoencoder is to reconstruct x̂i to be as close
to xi as possible.

This can be formalized using the following objective function:

min
W,W∗,c,b

1

m

m∑

i=1

n∑

j=1

(x̂ij − xij)
2

= min
W,W∗,c,b

1

m

m∑

i=1

(x̂i − xi)
T (x̂i − xi)

We can then train the autoencoder using back-propagation.

Homework question: What if the inputs were binary-valued?

April 20, 2021 9 / 12

Autoencoders

Choice of loss function

What should be the loss function to train an autoencoder?

Consider the case when inputs are real-valued:

The objective of the autoencoder is to reconstruct x̂i to be as close
to xi as possible.

This can be formalized using the following objective function:

min
W,W∗,c,b

1

m

m∑

i=1

n∑

j=1

(x̂ij − xij)
2

= min
W,W∗,c,b

1

m

m∑

i=1

(x̂i − xi)
T (x̂i − xi)

We can then train the autoencoder using back-propagation.

Homework question: What if the inputs were binary-valued?

April 20, 2021 9 / 12

Autoencoders

Choice of loss function

What should be the loss function to train an autoencoder?

Consider the case when inputs are real-valued:

The objective of the autoencoder is to reconstruct x̂i to be as close
to xi as possible.

This can be formalized using the following objective function:

min
W,W∗,c,b

1

m

m∑

i=1

n∑

j=1

(x̂ij − xij)
2

= min
W,W∗,c,b

1

m

m∑

i=1

(x̂i − xi)
T (x̂i − xi)

We can then train the autoencoder using back-propagation.

Homework question: What if the inputs were binary-valued?

April 20, 2021 9 / 12

Autoencoders

Choice of loss function

What should be the loss function to train an autoencoder?

Consider the case when inputs are real-valued:

The objective of the autoencoder is to reconstruct x̂i to be as close
to xi as possible.

This can be formalized using the following objective function:

min
W,W∗,c,b

1

m

m∑

i=1

n∑

j=1

(x̂ij − xij)
2

= min
W,W∗,c,b

1

m

m∑

i=1

(x̂i − xi)
T (x̂i − xi)

We can then train the autoencoder using back-propagation.

Homework question: What if the inputs were binary-valued?

April 20, 2021 9 / 12

Autoencoders

Connection to Principal Components Analysis

An autoencoder boils down to performing PCA on real-valued data when
we:

use a linear encoder (g = identity)

use a linear decoder (f = identity)

use squared error loss function

center the input by subtracting column-wise means

April 20, 2021 10 / 12

Autoencoders

Connection to Principal Components Analysis

An autoencoder boils down to performing PCA on real-valued data when
we:

use a linear encoder (g = identity)

use a linear decoder (f = identity)

use squared error loss function

center the input by subtracting column-wise means

April 20, 2021 10 / 12

Autoencoders

Connection to Principal Components Analysis

An autoencoder boils down to performing PCA on real-valued data when
we:

use a linear encoder (g = identity)

use a linear decoder (f = identity)

use squared error loss function

center the input by subtracting column-wise means

April 20, 2021 10 / 12

Autoencoders

Connection to Principal Components Analysis

An autoencoder boils down to performing PCA on real-valued data when
we:

use a linear encoder (g = identity)

use a linear decoder (f = identity)

use squared error loss function

center the input by subtracting column-wise means

April 20, 2021 10 / 12

Autoencoders

Connection to Principal Components Analysis

An autoencoder boils down to performing PCA on real-valued data when
we:

use a linear encoder (g = identity)

use a linear decoder (f = identity)

use squared error loss function

center the input by subtracting column-wise means

April 20, 2021 10 / 12

Autoencoders

Connection to Principal Components Analysis

An autoencoder boils down to performing PCA on real-valued data when
we:

use a linear encoder (g = identity)

use a linear decoder (f = identity)

use squared error loss function

center the input by subtracting column-wise means

April 20, 2021 10 / 12

Autoencoders

Autoencoders beyond PCA

Autoencoders can be much more flexible than doing PCA:

Feasibility on binary-valued data: PCA works for real-valued data
but autoencoders can apply to binary-valued data with sigmoid
activation for f and a suitable loss function.

Non-linear Dimensionality Reduction: PCA only uses linear
transformation on data. Autoencoders permit non-linearity via
activations.

Deep autoencoders: One may also use multiple layers in both
encoder and decoder to allow learning more flexible hidden
representations of the data.

Denoising autoencoders: Corrupt the input with probabilistic noise
before sending it into the autoencoder. Trains the autoencoder to
de-noise input.

Sparse autoencoders: Use a sigmoid function for g and include a
sparsity penalty on the hidden representations in the loss function.

April 20, 2021 11 / 12

Autoencoders

Autoencoders beyond PCA

Autoencoders can be much more flexible than doing PCA:

Feasibility on binary-valued data: PCA works for real-valued data
but autoencoders can apply to binary-valued data with sigmoid
activation for f and a suitable loss function.

Non-linear Dimensionality Reduction: PCA only uses linear
transformation on data. Autoencoders permit non-linearity via
activations.

Deep autoencoders: One may also use multiple layers in both
encoder and decoder to allow learning more flexible hidden
representations of the data.

Denoising autoencoders: Corrupt the input with probabilistic noise
before sending it into the autoencoder. Trains the autoencoder to
de-noise input.

Sparse autoencoders: Use a sigmoid function for g and include a
sparsity penalty on the hidden representations in the loss function.

April 20, 2021 11 / 12

Autoencoders

Autoencoders beyond PCA

Autoencoders can be much more flexible than doing PCA:

Feasibility on binary-valued data: PCA works for real-valued data
but autoencoders can apply to binary-valued data with sigmoid
activation for f and a suitable loss function.

Non-linear Dimensionality Reduction: PCA only uses linear
transformation on data. Autoencoders permit non-linearity via
activations.

Deep autoencoders: One may also use multiple layers in both
encoder and decoder to allow learning more flexible hidden
representations of the data.

Denoising autoencoders: Corrupt the input with probabilistic noise
before sending it into the autoencoder. Trains the autoencoder to
de-noise input.

Sparse autoencoders: Use a sigmoid function for g and include a
sparsity penalty on the hidden representations in the loss function.

April 20, 2021 11 / 12

Autoencoders

Autoencoders beyond PCA

Autoencoders can be much more flexible than doing PCA:

Feasibility on binary-valued data: PCA works for real-valued data
but autoencoders can apply to binary-valued data with sigmoid
activation for f and a suitable loss function.

Non-linear Dimensionality Reduction: PCA only uses linear
transformation on data. Autoencoders permit non-linearity via
activations.

Deep autoencoders: One may also use multiple layers in both
encoder and decoder to allow learning more flexible hidden
representations of the data.

Denoising autoencoders: Corrupt the input with probabilistic noise
before sending it into the autoencoder. Trains the autoencoder to
de-noise input.

Sparse autoencoders: Use a sigmoid function for g and include a
sparsity penalty on the hidden representations in the loss function.

April 20, 2021 11 / 12

Autoencoders

Autoencoders beyond PCA

Autoencoders can be much more flexible than doing PCA:

Feasibility on binary-valued data: PCA works for real-valued data
but autoencoders can apply to binary-valued data with sigmoid
activation for f and a suitable loss function.

Non-linear Dimensionality Reduction: PCA only uses linear
transformation on data. Autoencoders permit non-linearity via
activations.

Deep autoencoders: One may also use multiple layers in both
encoder and decoder to allow learning more flexible hidden
representations of the data.

Denoising autoencoders: Corrupt the input with probabilistic noise
before sending it into the autoencoder. Trains the autoencoder to
de-noise input.

Sparse autoencoders: Use a sigmoid function for g and include a
sparsity penalty on the hidden representations in the loss function.

April 20, 2021 11 / 12

Autoencoders

Autoencoders beyond PCA

Autoencoders can be much more flexible than doing PCA:

Feasibility on binary-valued data: PCA works for real-valued data
but autoencoders can apply to binary-valued data with sigmoid
activation for f and a suitable loss function.

Non-linear Dimensionality Reduction: PCA only uses linear
transformation on data. Autoencoders permit non-linearity via
activations.

Deep autoencoders: One may also use multiple layers in both
encoder and decoder to allow learning more flexible hidden
representations of the data.

Denoising autoencoders: Corrupt the input with probabilistic noise
before sending it into the autoencoder. Trains the autoencoder to
de-noise input.

Sparse autoencoders: Use a sigmoid function for g and include a
sparsity penalty on the hidden representations in the loss function.

April 20, 2021 11 / 12

Recurrent Neural Networks

Outline

1 Autoencoders

2 Recurrent Neural Networks

April 20, 2021 12 / 12

Sequential Data

Sometimes the sequence of data matters.

Text generation
Stock price prediction

The clouds are in the ?

sky

Simple solution: N-grams?

Hard to represent patterns with more than a few words (possible
patterns increases exponentially)

Simple solution: Neural networks?

Fixed input/output size
Fixed number of steps

Sequential Data

Sometimes the sequence of data matters.

Text generation
Stock price prediction

The clouds are in the ?

sky

Simple solution: N-grams?

Hard to represent patterns with more than a few words (possible
patterns increases exponentially)

Simple solution: Neural networks?

Fixed input/output size
Fixed number of steps

Sequential Data

Sometimes the sequence of data matters.

Text generation
Stock price prediction

The clouds are in the ?

sky

Simple solution: N-grams?

Hard to represent patterns with more than a few words (possible
patterns increases exponentially)

Simple solution: Neural networks?

Fixed input/output size
Fixed number of steps

Sequential Data

Sometimes the sequence of data matters.

Text generation
Stock price prediction

The clouds are in the ?

sky

Simple solution: N-grams?

Hard to represent patterns with more than a few words (possible
patterns increases exponentially)

Simple solution: Neural networks?

Fixed input/output size
Fixed number of steps

Sequential Data

Sometimes the sequence of data matters.

Text generation
Stock price prediction

The clouds are in the ?

sky

Simple solution: N-grams?

Hard to represent patterns with more than a few words (possible
patterns increases exponentially)

Simple solution: Neural networks?

Fixed input/output size
Fixed number of steps

Sequential Data

Sometimes the sequence of data matters.

Text generation
Stock price prediction

The clouds are in the ?

sky

Simple solution: N-grams?

Hard to represent patterns with more than a few words (possible
patterns increases exponentially)

Simple solution: Neural networks?

Fixed input/output size
Fixed number of steps

Recurrent Neural Networks

Recurrent neural networks (RNNs) are networks with loops,
allowing information to persist [Rumelhart et al., 1986].

Have memory that keeps track of information observed so far

Maps from the entire history of previous inputs to each output

Handle sequential data

Adapted from: N. Cinbis and C. Olah

Recurrent Networks Offer a Lot of Flexibility

Adapted from: A. Karpathy

Recurrent Networks Offer a Lot of Flexibility

Adapted from: A. Karpathy

Recurrent Networks Offer a Lot of Flexibility

Adapted from: A. Karpathy

Recurrent Networks Offer a Lot of Flexibility

Adapted from: A. Karpathy

Recurrent Networks Offer a Lot of Flexibility

Adapted from: A. Karpathy

Recurrent Neural Networks

xt is the input at time t.

ht is the hidden state (memory) at time t.

yt is the output at time t.

θ, θx, θy are distinct weights.
weights are the same at all time steps.

Adapted from: C. Olah

Recurrent Neural Networks

RNNs can be thought of as multiple copies of the same network,
each passing a message to a successor.

The same function and the same set of parameters are used at
every time step.

Are called recurrent because they perform the same task for each
input.

Adapted from: C. Olah

Back-Propagation Through Time (BPTT)

Using the generalized back-propagation algorithm one can obtain
the so-called Back-Propagation Through Time algorithm.

The recurrent model is represented as a multi-layer one (with an
unbounded number of layers) and backpropagation is applied on
the unrolled model.

The Problem of Long-term Dependencies

RNNs connect previous information to present task:
may be enough for predicting the next word for ”the clouds are in
the sky”

may not be enough when more context is needed: ”I grew up in
France ... I speak fluent French”

Adapted from: C. Olah

Vanishing/Exploding Gradients

In RNNs, during the gradient back propagation phase, the
gradient signal can end up being multiplied many times.

If the gradients are large

Exploding gradients, learning diverges
Solution: clip the gradients to a certain max value.

If the gradients are small

Vanishing gradients, learning very slow or stops
Solution: introducing memory via LSTM, GRU, etc.

Adapted from: N. Cinbis

Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks are RNNs
capable of learning long-term dependencies [Hochreiter and
Schmidhuber, 1997].

A memory cell using logistic and linear units with multiplicative
interactions:

Information gets into the cell whenever its input gate is on.
Information is thrown away from the cell whenever its forget gate
is off.
Information can be read from the cell by turning on its output gate.

Adapted from: C. Olah

LSTM Overview

We define the LSTM unit at each time step t to be a collection of
vectors in Rd:

Memory cell ct

c̃t = Tanh(Wc.[ht−1,xt] + bc) vector of new candidate values

ct = ft ∗ ct−1 + it ∗ c̃t
Forget gate ft in [0, 1]: scales old memory cell value (reset)

ft = σ(Wf .[ht−1,xt] + bf)

Input gate it in [0, 1]: scales input to memory cell (write)

it = σ(Wi.[ht−1,xt] + bi)

Output gate ot in [0, 1]: scales output from memory cell (read)

ot = σ(Wo.[ht−1,xt] + bo)

Output ht

ht = ot ∗ Tanh(ct)

Notation

Adapted from: C. Olah

The Core Idea Behind LSTMs: Cell State (Memory

Cell)

Information can flow along the memory cell unchanged.
Information can be removed or written to the memory cell,
regulated by gates.

Adapted from: C. Olah

Gates

Gates are a way to optionally let information through.

A sigmoid layer outputs number between 0 and 1, deciding how
much of each component should be let through.
A pointwise multiplication operation applies the decision.

Adapted from: C. Olah

Forget Gate

A sigmoid layer, forget gate, decides which values of the
memory cell to reset.

ft = σ(Wf .[ht−1,xt] + bf)

Adapted from: C. Olah

Input Gate

A sigmoid layer, input gate, decides which values of the
memory cell to write to.

it = σ(Wi.[ht−1,xt] + bi)

Adapted from: C. Olah

Vector of New Candidate Values

A Tanh layer creates a vector of new candidate values c̃t to
write to the memory cell.

c̃t = Tanh(Wc.[ht−1,xt] + bc)

Adapted from: C. Olah

Memory Cell Update

The previous steps decided which values of the memory cell to
reset and overwrite.
Now the LSTM applies the decisions to the memory cell.

ct = ft ∗ ct−1 + it ∗ c̃t

Adapted from: C. Olah

Output Gate

A sigmoid layer, output gate, decides which values of the
memory cell to output.

ot = σ(Wo.[ht−1,xt] + bo)

Adapted from: C. Olah

Output Update

The memory cell goes through Tanh and is multiplied by the
output gate.

ht = ot ∗ Tanh(ct)

Adapted from: C. Olah

Variants on LSTM

Gated Recurrent Unit (GRU) [Cho et al., 2014]:

Combine the forget and input gates into a single update gate.
Merge the memory cell and the hidden state.
...

Adapted from: C. Olah

Applications

Cursive handwriting recognition
https://www.youtube.com/watch?v=mLxsbWAYIpw

Translation
Translate any signal to another signal, e.g., translate English to
French, translate image to image caption, and songs to lyrics.

Visual sequence tasks

Adapted from: Jeff Donahue et al. CVPR15

