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Logistics

Logistics

HW 0 is due today.

HW 1 will be released today.

Will be releasing the schedule of lectures.
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Review of last lecture

Multi-class classification

Training data (set)

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
Each xn ∈ RD is called a feature vector.

Each yn ∈ [C] = {1, 2, · · · ,C} is called a label/class/category.

They are used to learn f : RD → [C] for future prediction.

Special case: binary classification

Number of classes: C = 2

Conventional labels: {0, 1} or {−1,+1}

K-NNC: predict the majority label within the K-nearest neighbor set
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Review of last lecture

Datasets

Training data

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
They are used to learn f(·)

Test data

M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
They are used to evaluate how well f(·) will do.

Development/Validation data

L samples/instances: Ddev = {(x1, y1), (x2, y2), · · · , (xL, yL)}
They are used to optimize hyper-parameter(s).

These three sets should not overlap!
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Review of last lecture

S-fold Cross-validation

What if we do not have a development set?

Split the training data into S
equal parts.

Use each part in turn as a
development dataset and use
the others as a training dataset.

Choose the hyper-parameter
leading to best average
performance.

S = 5: 5-fold cross validation

Special case: S = N, called leave-one-out.
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Review of last lecture

High level picture

Typical steps of developing a machine learning system:

Collect data, split into training, development, and test sets.

Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

Evaluate using the test data and report performance.

Use the model to predict future/make decisions.

How to do the red part exactly?
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Linear regression Motivation

Regression

Predicting a continuous outcome variable using past observations

Predicting future temperature (lecture 1)

Predicting the amount of rainfall

Predicting the demand of a product

Predicting the sale price of a house

...

Key difference from classification

continuous vs discrete

measure prediction errors differently.

lead to quite different learning algorithms.

Linear Regression: regression with linear models
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Linear regression Motivation

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)
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Linear regression Motivation

Features used to predict
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Linear regression Motivation

Correlation between square footage and sale price
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Linear regression Motivation

Possibly linear relationship

Sale price ≈ price per sqft × square footage + fixed expense

(slope) (intercept)
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Linear regression Motivation

How to learn the unknown parameters?

How to measure error for one prediction?

The classification error (0-1 loss, i.e. right or wrong) is inappropriate
for continuous outcomes.

We can look at

absolute error: | prediction - sale price |
or squared error: (prediction - sale price)2 (most common)

Goal: pick the model (unknown parameters) that minimizes the
average/total prediction error, but on what set?

test set, ideal but we cannot use test set while training

training set X
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Linear regression Motivation

Example

Predicted price = price per sqft × square footage + fixed expense

one model: price per sqft = 0.3K, fixed expense = 210K

sqft sale price (K) prediction (K) squared error

2000 810 810 0

2100 907 840 672

1100 312 540 2282

5500 2,600 1,860 7402

· · · · · · · · · · · ·
Total 0 + 672 + 2282 + 7402 + · · ·

Adjust price per sqft and fixed expense such that the total squared error is
minimized.
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Linear regression Setup and Algorithm

Formal setup for linear regression

Input: x ∈ RD (features, covariates, context, predictors, etc)

Output: y ∈ R (responses, targets, outcomes, etc)

Training data: D = {(xn, yn), n = 1, 2, . . . ,N}

Linear model: f : RD → R, with f(x) = w0 +
∑D

d=1wdxd= w0 +wTx
(superscript T stands for transpose), i.e. a hyper-plane parametrized by

w = [w1 w2 · · · wD]
T (weights, weight vector, parameter vector, etc)

bias w0

NOTE: for notation convenience, very often we

append 1 to each x as the first feature: x̃ = [1 x1 x2 . . . xD]
T

let w̃ = [w0 w1 w2 · · · wD]
T, a concise representation of all D + 1

parameters
the model becomes simply f(x) = w̃Tx̃
sometimes just use w,x,D for w̃, x̃,D + 1!
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Linear regression Setup and Algorithm

Goal

Minimize total squared error

Residual Sum of Squares (RSS), a function of w̃

RSS(w̃) =

∑
n

(f(xn)− yn)2 =
∑
n

(x̃T
n w̃ − yn)2

find w̃∗ = argmin
w̃∈RD+1

RSS(w̃), i.e. least (mean) squares solution

(more generally called empirical risk minimizer)

reduce machine learning to optimization

in principle can apply any optimization algorithm, but linear
regression admits a closed-form solution
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Linear regression Setup and Algorithm

Warm-up: D = 0

Only one parameter w0: constant prediction f(x) = w0

f is a horizontal line, where should it be?
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Linear regression Setup and Algorithm

Warm-up: D = 0

Optimization objective becomes

RSS(w0) =
∑
n

(w0 − yn)2 (it’s a quadratic aw2
0 + bw0 + c)

= Nw2
0 − 2

(∑
n

yn

)
w0 + cnt.

= N

(
w0 −

1

N

∑
n

yn

)2

+ cnt.

It is clear that w∗0 = 1
N

∑
n yn, i.e. the average

Exercise: what if we use absolute error instead of squared error?
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Linear regression Setup and Algorithm

Warm-up: D = 1

Optimization objective becomes

RSS(w̃) =
∑
n

(w0 + w1xn − yn)2

General approach: find stationary points, i.e., points with zero gradient{
∂RSS(w̃)
∂w0

= 0
∂RSS(w̃)
∂w1

= 0
⇒

∑
n(w0 + w1xn − yn) = 0∑
n(w0 + w1xn − yn)xn = 0

⇒ Nw0 + w1
∑

n xn =
∑

n yn
w0
∑

n xn + w1
∑

n x
2
n =

∑
n ynxn

(a linear system)

⇒
(

N
∑

n xn∑
n xn

∑
n x

2
n

)(
w0

w1

)
=

( ∑
n yn∑

n xnyn

)
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Linear regression Setup and Algorithm

Least square solution for D = 1

⇒
(
w∗0
w∗1

)
=

(
N

∑
n xn∑

n xn
∑

n x
2
n

)−1( ∑
n yn∑

n xnyn

)
(assuming the matrix is invertible)

Are stationary points minimizers?

yes for convex objectives (RSS is convex in w̃)

not true in general
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Linear regression Setup and Algorithm

General least square solution

Objective

RSS(w̃) =
∑
n

(x̃T
n w̃ − yn)2

Again, find stationary points (multivariate calculus)

∇RSS(w̃) = 2
∑
n

x̃n(x̃
T
n w̃ − yn)

∝

(∑
n

x̃nx̃
T
n

)
w̃ −

∑
n

x̃nyn

= (X̃TX̃)w̃ − X̃Ty = 0

where

X̃ =


x̃T
1

x̃T
2
...
x̃T
N

 ∈ RN×(D+1), y =


y1
y2
...
yN

 ∈ RN

24 / 33



Linear regression Setup and Algorithm

General least square solution

Objective

RSS(w̃) =
∑
n

(x̃T
n w̃ − yn)2

Again, find stationary points (multivariate calculus)

∇RSS(w̃) = 2
∑
n

x̃n(x̃
T
n w̃ − yn)

∝

(∑
n

x̃nx̃
T
n

)
w̃ −

∑
n

x̃nyn

= (X̃TX̃)w̃ − X̃Ty = 0

where

X̃ =


x̃T
1

x̃T
2
...
x̃T
N

 ∈ RN×(D+1), y =


y1
y2
...
yN

 ∈ RN

24 / 33



Linear regression Setup and Algorithm

General least square solution

Objective

RSS(w̃) =
∑
n

(x̃T
n w̃ − yn)2

Again, find stationary points (multivariate calculus)

∇RSS(w̃) = 2
∑
n

x̃n(x̃
T
n w̃ − yn) ∝

(∑
n

x̃nx̃
T
n

)
w̃ −

∑
n

x̃nyn

= (X̃TX̃)w̃ − X̃Ty = 0

where

X̃ =


x̃T
1

x̃T
2
...
x̃T
N

 ∈ RN×(D+1), y =


y1
y2
...
yN

 ∈ RN

24 / 33



Linear regression Setup and Algorithm

General least square solution

Objective

RSS(w̃) =
∑
n

(x̃T
n w̃ − yn)2

Again, find stationary points (multivariate calculus)

∇RSS(w̃) = 2
∑
n

x̃n(x̃
T
n w̃ − yn) ∝

(∑
n

x̃nx̃
T
n

)
w̃ −

∑
n

x̃nyn

= (X̃TX̃)w̃ − X̃Ty

= 0

where

X̃ =


x̃T
1

x̃T
2
...
x̃T
N

 ∈ RN×(D+1), y =


y1
y2
...
yN

 ∈ RN

24 / 33



Linear regression Setup and Algorithm

General least square solution

Objective

RSS(w̃) =
∑
n

(x̃T
n w̃ − yn)2

Again, find stationary points (multivariate calculus)

∇RSS(w̃) = 2
∑
n

x̃n(x̃
T
n w̃ − yn) ∝

(∑
n

x̃nx̃
T
n

)
w̃ −

∑
n

x̃nyn

= (X̃TX̃)w̃ − X̃Ty = 0

where

X̃ =


x̃T
1

x̃T
2
...
x̃T
N

 ∈ RN×(D+1), y =


y1
y2
...
yN

 ∈ RN

24 / 33



Linear regression Setup and Algorithm

General least square solution

(X̃TX̃)w̃ − X̃Ty = 0 ⇒ w̃∗ = (X̃TX̃)−1X̃Ty

assuming X̃TX̃ is invertible for now.

Again by convexity w̃∗ is the minimizer of RSS.

Verify the solution when D = 1:

X̃TX̃ =

(
1 1 · · · 1
x1 x2 · · · xN

)
1 x1
1 x2
· · · · · ·
1 xN

 =

(
N

∑
n xn∑

n xn
∑

n x
2
n

)

when D = 0: (X̃TX̃)−1 = 1
N , X̃Ty =

∑
n yn
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Linear regression Setup and Algorithm

Another approach

RSS is a quadratic:

RSS(w̃) =
∑
n

(x̃T
n w̃ − yn)2 = ‖X̃w̃ − y‖22

=
(
X̃w̃ − y

)T (
X̃w̃ − y

)
= w̃TX̃TX̃w̃ − yTX̃w̃ − w̃TX̃Ty + cnt.

=
(
w̃ − (X̃TX̃)−1X̃Ty

)T (
X̃TX̃

)(
w̃ − (X̃TX̃)−1X̃Ty

)
+ cnt.

Note: uT
(
X̃TX̃

)
u =

(
X̃u

)T
X̃u = ‖X̃u‖22 ≥ 0 and is 0 if u = 0.

So w̃∗ = (X̃TX̃)−1X̃Ty is the minimizer.
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Linear regression Discussions

Computational complexity

Bottleneck of computing

w̃∗ =
(
X̃TX̃

)−1
X̃Ty

is to invert the matrix X̃TX̃ ∈ R(D+1)×(D+1)

aka pseudo-inverse1 denoted by (·)†, i.e. X̃† =
(
X̃TX̃

)−1
X̃T

naively need O(D3) time

there are many faster approaches

see https://en.wikipedia.org/wiki/Moore-Penrose_inverse
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Linear regression Discussions

What if X̃TX̃ is not invertible

What does that imply?

Recall
(
X̃TX̃

)
w∗ = X̃Ty.

If X̃TX̃ not invertible, this equation aka

Normal Equations has

infinitely many solutions

(⇒ infinitely many minimizers)

This is because Normal Equations are always consistent2 meaning a
solution always exists! It may not be unique though.

See https://sites.math.washington.edu/~burke/crs/308/LeastSquares.pdf
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Linear regression Discussions

What if X̃TX̃ is not invertible

Why would that happen?

One situation: N < D+1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft sale price

1000 500K

Any line passing through this single point is a minimizer of RSS.
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Linear regression Discussions

How to resolve this issue?

Intuition: what does inverting X̃TX̃ do?

eigendecomposition: X̃TX̃ = UT


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 · · · λD 0
0 · · · 0 λD+1

U

where λ1 ≥ λ2 ≥ · · ·λD+1 ≥ 0 are eigenvalues.

inverse: (X̃TX̃)−1 = UT



1
λ1

0 · · · 0

0 1
λ2
· · · 0

...
...

...
...

0 · · · 1
λD

0

0 · · · 0 1
λD+1

U

i.e. just inverse the eigenvalues
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Linear regression Discussions

How to solve this problem?

Non-invertible ⇒ some eigenvalues are 0.

One natural fix: add something positive

X̃TX̃ + λI = UT


λ1 + λ 0 · · · 0

0 λ2 + λ · · · 0
...

...
...

...
0 · · · λD + λ 0
0 · · · 0 λD+1 + λ

U

where λ > 0 and I is the identity matrix. Now it is invertible:

(X̃TX̃ + λI)−1 = UT



1
λ1+λ

0 · · · 0

0 1
λ2+λ

· · · 0
...

...
...

...
0 · · · 1

λD+λ
0

0 · · · 0 1
λD+1+λ

U
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Linear regression Discussions

Fix the problem

The solution becomes

w̃∗ =
(
X̃TX̃ + λI

)−1
X̃Ty

not a minimizer of the original RSS

This in fact comes from minimizing regularized RSS (covered in next
lecture)!

min
w
‖X̃w̃ − y‖22 + λ‖y‖22

λ is a hyper-parameter, can be tuned by cross-validation.
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Linear regression Discussions

Comparison to NNC

Parametric versus non-parametric

Parametric methods: the size of the model does not grow with the
size of the training set N.

e.g. linear regression, D + 1 parameters, independent of N.

Non-parametric methods: the size of the model grows with the size
of the training set.

e.g. NNC, the training set itself needs to be kept in order to predict.
Thus, the size of the model is the size of the training set.
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