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Logistics

e HW 0 is due today.
o HW 1 will be released today.

@ Will be releasing the schedule of lectures.
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Review of last lecture

Multi-class classification

Training data (set)
e N samples/instances: D™AN = {(x1,y1), (x2,y2), - , (N, UN) }
@ Each x,, € RP is called a feature vector.
e Each y, € [C] ={1,2,---,C} is called a label/class/category.
@ They are used to learn f : RP — [C] for future prediction.

Special case: binary classification
@ Number of classes: C = 2
e Conventional labels: {0,1} or {—1,+1}

K-NNC: predict the majority label within the K-nearest neighbor set
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Datasets

Training data

e N samples/instances: D™ = {(x1,y1), (x2,y2), - , (N, UN) }
@ They are used to learn f(-)

Test data
e M samples/instances: D™ = {(x1,y1), (z2,42), - , (M, ym) }

@ They are used to evaluate how well f(-) will do.

Development/Validation data

oL samples/instances: DV = {(wla yl)v (m% y2)7 Ty (va yL)}
@ They are used to optimize hyper-parameter(s).

These three sets should not overlap!
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S-fold Cross-validation

What if we do not have a development set?

@ Split the training data into S S = 5: 5-fold cross validation
equal parts.
@ Use each part in turn as a I |

development dataset and use
the others as a training dataset.

@ Choose the hyper-parameter
leading to best average
performance.

Special case: S = N, called leave-one-out.
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High level picture

Typical steps of developing a machine learning system:
@ Collect data, split into training, development, and test sets.

@ Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

o Evaluate using the test data and report performance.

@ Use the model to predict future/make decisions.
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High level picture

Typical steps of developing a machine learning system:
@ Collect data, split into training, development, and test sets.

@ Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

o Evaluate using the test data and report performance.
@ Use the model to predict future/make decisions.

How to do the red part exactly?
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Linear regression Motivation

Regression

Predicting a continuous outcome variable using past observations

Predicting future temperature (lecture 1)
Predicting the amount of rainfall
Predicting the demand of a product

°
°
@ Predicting the sale price of a house
°
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Linear regression Motivation

Regression

Predicting a continuous outcome variable using past observations
@ Predicting future temperature (lecture 1)
@ Predicting the amount of rainfall
@ Predicting the demand of a product
@ Predicting the sale price of a house

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

@ lead to quite different learning algorithms.

Linear Regression: regression with linear models
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Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)
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Linear regression

Features used to predict
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Linear regression

Correlation between square footage and sale price
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Linear regression

Possibly linear relationship

Sale price =~ price_per_sqft x square_footage + fixed_expense
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Linear regression

Possibly linear relationship

Sale price =~ price_per_sqft x square_footage + fixed_expense

(slope) (intercept)
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Linear regression

How to learn the unknown parameters?

How to measure error for one prediction?

@ The classification error (0-1 loss, i.e. right or wrong) is inappropriate
for continuous outcomes.
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Linear regression Motivation

How to learn the unknown parameters?

How to measure error for one prediction?

@ The classification error (0-1 loss, i.e. right or wrong) is inappropriate
for continuous outcomes.

@ We can look at

o absolute error: | prediction - sale price |

e or squared error: (prediction - sale price)> (most common)

Goal: pick the model (unknown parameters) that minimizes the
average/total prediction error, but on what set?

o test set, ideal but we cannot use test set while training

@ training set v/
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Linear regression Motivation

Example

Predicted price = price_per_sqft x square_footage + fixed_expense

one model: price_per_sqft = 0.3K, fixed_expense = 210K

sqft | sale price (K) | prediction (K) | squared error

2000 | 810 810 0

2100 | 907 840 67

1100 | 312 540 228°

5500 | 2,600 1,860 7402

Total 04677 4 2287 4+ 740° + - - -

Adjust price_per_sqft and fixed_expense such that the total squared error is
minimized.
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Formal setup for linear regression

Input: x € RP (features, covariates, context, predictors, etc)
Output: y € R (responses, targets, outcomes, etc)
Training data: D = {(x,,yn),n =1,2,...,N}
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Formal setup for linear regression

Input: x € RP (features, covariates, context, predictors, etc)
Output: y € R (responses, targets, outcomes, etc)
Training data: D = {(x,,yn),n =1,2,...,N}

Linear model: f:RP — R, with f(x) = wg + 2(11):1 wyrg= wo + wrx
(superscript T stands for transpose), i.e. a hyper-plane parametrized by

o w=[w; wy --- wp]’ (weights, weight vector, parameter vector, etc)
@ bias wy

NOTE: for notation convenience, very often we

@ append 1 to each z as the first feature: & = [1 21 29 ... xp]T
o let w = [wg wi wy --- wp]T, a concise representation of all D + 1
parameters

@ the model becomes simply f(x) = w
@ sometimes just use w, x, D for w, x,

Tz
D+1
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Setup and Algorithm
Goal

Minimize total squared error

o Residual Sum of Squares (RSS), a function of w

RSS(w) = Y (f(mn) —yn)> =D _(Zh1b — yn)?

n n

o find w* = argmin RSS(w), i.e. least (mean) squares solution
weRP+!
(more generally called empirical risk minimizer)
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Setup and Algorithm
Goal

Minimize total squared error

o Residual Sum of Squares (RSS), a function of w

RSS(w) = Y (f(mn) —yn)> =D _(Zh1b — yn)?

n n

o find w* = argmin RSS(w), i.e. least (mean) squares solution
weRP+!
(more generally called empirical risk minimizer)

e reduce machine learning to optimization

@ in principle can apply any optimization algorithm, but linear
regression admits a closed-form solution
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Linear regression

Warm-up: D=0

Only one parameter wy: constant prediction f(z) = wq
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Warm-up: D=0

Optimization objective becomes

RSS(wp) = Z(wo — yn)? (it's a quadratic aw + bwg + ¢)
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SO i
Warm-up: D=0

Optimization objective becomes
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n
) 2
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SO i
Warm-up: D=0

Optimization objective becomes

RSS(wp) = Z(QU(] — yn)? (it's a quadratic aw + bwg + ¢)

n

= Nwi —2 <Zyn> wo + cnt.
n
) 2
=N (wo — Nzn:yn> + cnt.

It is clear that wg = % > n Yn, i.e. the average

Exercise: what if we use absolute error instead of squared error?
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Warm-up: D =1

Optimization objective becomes

RSS(w) = Z(wo + w1z, — Yn)®

n



SO i
Warm-up: D =1

Optimization objective becomes

RSS(w) = Z(’wo + w1y — Yn)?

n

General approach: find stationary points, i.e., points with zero gradient

ORSS(w
oL =0 (wo Fwiz, —ya) =0
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SO i
Warm-up: D =1

Optimization objective becomes

RSS(t0) = 3 (wo + wizy - y)?
n
General approach: find stationary points, i.e., points with zero gradient

ORSS(w
7310( ) — N o (wo +wizy, — yn) =0
) 0 En(wo + wixy — yn)xn =0

Nw0+wlznxn :Znyn

a linear system
Wo Zn In + w1 Zn x%z = Zn YnTn ( y )
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Warm-up: D =1

Optimization objective becomes

RSS(t0) = 3 (wo + wizy - y)?
n
General approach: find stationary points, i.e., points with zero gradient

ORSS(w
7310( ) — N o (wo +wizy, — yn) =0
) 0 En(wo + wixy — yn)xn =0

Nwo+wi ), Tn => . Un
Wo Zn Tn + w1 Zn x%z = Zn YnTn

(o Ea ) ()= (&)

(a linear system)

)
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L east square solution for D = 1

()= (g &3 ><zzxyy>

(assuming the matrix is invertible)

Are stationary points minimizers?

@ yes for convex objectives (RSS is convex in w)
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L east square solution for D = 1

()= (g &3 ><zzxyy>

(assuming the matrix is invertible)

Are stationary points minimizers?
@ yes for convex objectives (RSS is convex in w)

@ not true in general
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Linear regression

General least square solution

Objective
RSS(i) = 3 (&1 — y)?

n



General least square solution
Objective

RSS(®) = Y (&n® — yn)*

n

Again, find stationary points (multivariate calculus)

VRSS(w —ZZmn (XD — 1)
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General least square solution

Objective
RSS(w) = D (Z,0 — yn)”

n

Again, find stationary points (multivariate calculus)

VRSS(W) =2 &n(Tp® — yn) (Z 5:”5;2) W~ Enyn

where o
T Y1
~T
-~ x Y2
X: 2 ERNX(D+1), Y= ] ERN
Ty YN
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(XTX)o - XTy=0 = &' =XTX)'XTy

assuming X T X is invertible for now.

Again by convexity w* is the minimizer of RSS.

Verify the solution when D = 1:

1 X1
XTX:< 1 1 - 1> T :< N ang>
331 :L‘2 e "'BN PR ann ann
1 TN
when D = 0: (XTX)™! = e Xty =3, un
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Another approach

RSS is a quadratic:

RSS(w) = ) (&nd — yn)? = || X @ — ylI3

= (X - ;)T (X@ - y)

= X" Xw— yTX"J) — 'LTJTX'Ty+cnt.



SO i
Another approach

RSS is a quadratic:
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SO i
Another approach

RSS is a quadratic:

RSS(w) = ) (&nd — yn)? = || X @ — ylI3

= (X'ﬁ) — y)T (X'i[) - y)
=w' X" X —y"Xw—w" Xy + cnt.
= (- (XTX)'X"y) (X7X) (8- (X"X) ' XTy) +ent

~ ~ T - ~
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SO i
Another approach

RSS is a quadratic:

RSS(w) = ) (&nd — yn)? = || X @ — ylI3

n

(%) (%5

DT XTXw — y" X — 0" X Ty + ent.

= (- (XTX)'X"y) (X7X) (8- (X"X) ' XTy) +ent

~ T - ~
Note: u <XTX) u = (Xu) Xu=|Xul2>0andis0if u=0.
So w* = (XTX) ' XTy is the minimizer.
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Linear regression Discussions

Computational complexity

Bottleneck of computing
oo\l o
W = (X X) XTy
is to invert the matrix X T X € R(D+1)x(D+1)

. ol
o aka pseudo-inverse' denoted by ()T, i.e. XT = <XTX> xT

e naively need O(D?) time

see https://en.wikipedia.org/wiki/Moore-Penrose_inverse
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Bottleneck of computing
oo\l o
W = (X X) XTy
is to invert the matrix X T X € R(D+1)x(D+1)

. ol
o aka pseudo-inverse' denoted by ()T, i.e. XT = <XTX> xT

e naively need O(D?) time

@ there are many faster approaches

see https://en.wikipedia.org/wiki/Moore-Penrose_inverse
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Discussions
What if XT X is not invertible

What does that imply?
Recall (X'TX> w* = XTy. If XTX not invertible, this equation aka

Normal Equations has

@ infinitely many solutions

See https://sites.math.washington.edu/~burke/crs/308/LeastSquares.pdf
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Discussions
What if XTX is not invertible

What does that imply?

Recall (X'TX> w* = XTy. If XTX not invertible, this equation aka
Normal Equations has

e infinitely many solutions (= infinitely many minimizers)

@ This is because Normal Equations are always consistent> meaning a
solution always exists! It may not be unique though.

See https://sites.math.washington.edu/~burke/crs/308/LeastSquares.pdf
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Discussions
What if XT X is not invertible

Why would that happen?

One situation: N < D+ 1, i.e. not enough data to estimate all parameters.

Example: D=N=1
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sale price
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500K
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Discussions
What if XT X is not invertible

Why would that happen?

One situation: N < D+ 1, i.e. not enough data to estimate all parameters.

Example: D=N=1

sqft | sale price
1000 | 500K

Any line passing through this single point is a minimizer of RSS.
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Linear regression Discussions

How to resolve this issue?

Intuition: what does inverting XTX do?

At 0

0 A
eigendecomposition: XTX =UT : :
0 -+ Ap
0 - 0

where A\ > Ao > - Ap41 > 0 are eigenvalues.
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Discussions
How to resolve this issue?

Intuition: what does inverting XTX do?

A O .- 0
0 Xy - 0
eigendecomposition: XTX =U" : : : : U
0 AD 0
| O 0 Apt1
where A\ > Ao > - Ap41 > 0 are eigenvalues.
- .
x 0 --- 0
0 )\% . 0
inverse: (XTX)'=UT| : : : U
0 x 0
0o --- 0 -
L AD+1

i.e. just inverse the eigenvalues
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How to solve this problem?

Non-invertible = some eigenvalues are 0.



Linear regression Discussions

How to solve this problem?

Non-invertible = some eigenvalues are 0.

One natural fix: add something positive

XTX + x1=U"

_>\1+)\ 0
0 Ao+ A
0
0

where A > 0 and I is the identity matrix.

AD + A
0

0

AD+1 + A |
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Linear regression Discussions

How to solve this problem?

Non-invertible = some eigenvalues are 0.

One natural fix: add something positive

[ AL+ A 0 0 i
0 Ao+ A 0
XTX 2 1=U" : : : : U
0 AD + A 0
| 0 0 AD+1 + A i
where A > 0 and I is the identity matrix. Now it is invertible:
- -
A1+ ? O
_ _ 0 Ao+ 0
(XTX + )t =U" ; ' : U
1
0 AD+A (1)
I 0 0 Xor A
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Fix the problem

The solution becomes

B = (XTX' + >\I> T xTy

@ not a minimizer of the original RSS



B
Fix the problem

The solution becomes

w*:<X?X+Afy4XTy

@ not a minimizer of the original RSS

This in fact comes from minimizing regularized RSS (covered in next
lecture)!

min | X@ — |3 + Myl
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B
Fix the problem

The solution becomes

w*:<X?X+Afy4XTy

@ not a minimizer of the original RSS

This in fact comes from minimizing regularized RSS (covered in next
lecture)!

min | X@ — |3 + Myl
A is a hyper-parameter, can be tuned by cross-validation.
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B
Comparison to NNC

Parametric versus non-parametric

@ Parametric methods: the size of the model does not grow with the
size of the training set N.

e e.g. linear regression, D + 1 parameters, independent of N.

@ Non-parametric methods: the size of the model grows with the size
of the training set.

e e.g. NNC, the training set itself needs to be kept in order to predict.
Thus, the size of the model is the size of the training set.
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