
CSCI567 Machine Learning (Spring 2021)

Sirisha Rambhatla

University of Southern California

Feb 12, 2021

1 / 28

Outline

1 Logistics

2 Review of last lecture

3 Neural Nets

2 / 28

Logistics

Outline

1 Logistics

2 Review of last lecture

3 Neural Nets

3 / 28

Logistics

Logistics

Sign-up with your group members for the project!

4 / 28

Review of last lecture

Outline

1 Logistics

2 Review of last lecture

3 Neural Nets

5 / 28

Review of last lecture

Linear Discriminant Analysis
The main bottleneck is not knowing P(X = x|y = c)

P(y = c|X = x) =
P(X = x|y = c)P(y = c)

P(X = x)
.

LDA makes two simplifying assumptions:

Let P(X = x|y = c) ∼ N (µc,Σc), and

Let all class covariances be the same i.e. Σc = Σ for all c ∈ [C]

If so, the decision boundary (for binary classification) is given by

P(y = 0|X = x) = P(y = 1|X = x)

P(X = x|y = 0)P(y = 0) = P(X = x|y = 1)P(y = 1)

6 / 28

Review of last lecture

What do the decision boundaries look like?

The decision boundaries are a quadratic when Σ’s are not the same, this is
known as Quadratic Discriminant Analysis!

7 / 28

Neural Nets

Outline

1 Logistics

2 Review of last lecture

3 Neural Nets
Definition
Backpropagation
Preventing overfitting

8 / 28

Neural Nets Definition

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

φ(x) : x ∈ RD → z ∈ RM

But what kind of nonlinear mapping φ should be used? Can we actually
learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

9 / 28

Neural Nets Definition

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

φ(x) : x ∈ RD → z ∈ RM

But what kind of nonlinear mapping φ should be used? Can we actually
learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

9 / 28

Neural Nets Definition

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

φ(x) : x ∈ RD → z ∈ RM

But what kind of nonlinear mapping φ should be used? Can we actually
learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

9 / 28

Neural Nets Definition

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use

Rectified Linear Unit (ReLU): h(a) = max{0, a}
sigmoid function: h(a) = 1

1+e−a

TanH: h(a) = ea−e−a

ea+e−a

many more

10 / 28

Neural Nets Definition

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use

Rectified Linear Unit (ReLU): h(a) = max{0, a}
sigmoid function: h(a) = 1

1+e−a

TanH: h(a) = ea−e−a

ea+e−a

many more

10 / 28

Neural Nets Definition

More output nodes

W ∈ R4×3, h : R4 → R4 so h(a) = (h1(a1), h2(a2), h3(a3), h4(a4))

Can think of this as a nonlinear basis: Φ(x) = h(Wx)

11 / 28

Neural Nets Definition

More output nodes

W ∈ R4×3, h : R4 → R4 so h(a) = (h1(a1), h2(a2), h3(a3), h4(a4))

Can think of this as a nonlinear basis: Φ(x) = h(Wx)

11 / 28

Neural Nets Definition

More layers

Becomes a network:

each node is called a neuron

h is called the activation function
can use h(a) = 1 for one neuron in each layer to incorporate bias term
output neuron can use h(a) = a

#layers refers to #hidden layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

this is a feedforward, fully connected neural net, there are many
variants

12 / 28

Neural Nets Definition

More layers

Becomes a network:

each node is called a neuron

h is called the activation function
can use h(a) = 1 for one neuron in each layer to incorporate bias term
output neuron can use h(a) = a

#layers refers to #hidden layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

this is a feedforward, fully connected neural net, there are many
variants

12 / 28

Neural Nets Definition

More layers

Becomes a network:

each node is called a neuron

h is called the activation function
can use h(a) = 1 for one neuron in each layer to incorporate bias term
output neuron can use h(a) = a

#layers refers to #hidden layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

this is a feedforward, fully connected neural net, there are many
variants

12 / 28

Neural Nets Definition

More layers

Becomes a network:

each node is called a neuron

h is called the activation function
can use h(a) = 1 for one neuron in each layer to incorporate bias term
output neuron can use h(a) = a

#layers refers to #hidden layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

this is a feedforward, fully connected neural net, there are many
variants

12 / 28

Neural Nets Definition

More layers

Becomes a network:

each node is called a neuron

h is called the activation function
can use h(a) = 1 for one neuron in each layer to incorporate bias term
output neuron can use h(a) = a

#layers refers to #hidden layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

this is a feedforward, fully connected neural net, there are many
variants

12 / 28

Neural Nets Definition

More layers

Becomes a network:

each node is called a neuron

h is called the activation function
can use h(a) = 1 for one neuron in each layer to incorporate bias term
output neuron can use h(a) = a

#layers refers to #hidden layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

this is a feedforward, fully connected neural net, there are many
variants

12 / 28

Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

13 / 28

Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

13 / 28

Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

13 / 28

Neural Nets Definition

Math formulation

An L-layer neural net can be written as

f(x) = hL (WLhL−1 (WL−1 · · ·h1 (W1x)))

To ease notation, for a given input x, define recursively

o0 = x, a` = W`o`−1, o` = h`(a`) (` = 1, . . . , L)

where

W` ∈ RD`×D`−1 is the weights between layer `− 1 and `

D0 = D,D1, . . . ,DL are numbers of neurons at each layer

a` ∈ RD` is input to layer `

o` ∈ RD` is output to layer `

h` : RD` → RD` is activation functions at layer `

14 / 28

Neural Nets Definition

Math formulation

An L-layer neural net can be written as

f(x) = hL (WLhL−1 (WL−1 · · ·h1 (W1x)))

To ease notation, for a given input x, define recursively

o0 = x, a` = W`o`−1, o` = h`(a`) (` = 1, . . . , L)

where

W` ∈ RD`×D`−1 is the weights between layer `− 1 and `

D0 = D,D1, . . . ,DL are numbers of neurons at each layer

a` ∈ RD` is input to layer `

o` ∈ RD` is output to layer `

h` : RD` → RD` is activation functions at layer `
14 / 28

Neural Nets Definition

Learning the model

No matter how complicated the model is, our goal is the same: minimize

E(W1, . . . ,WL) =
1

N

N∑
n=1

En(W1, . . . ,WL)

where

En(W1, . . . ,WL) =

{
‖f(xn)− yn‖22 for regression

ln
(

1 +
∑

k 6=yn
ef(xn)k−f(xn)yn

)
for classification

15 / 28

Neural Nets Definition

Learning the model

No matter how complicated the model is, our goal is the same: minimize

E(W1, . . . ,WL) =
1

N

N∑
n=1

En(W1, . . . ,WL)

where

En(W1, . . . ,WL) =

{
‖f(xn)− yn‖22 for regression

ln
(

1 +
∑

k 6=yn
ef(xn)k−f(xn)yn

)
for classification

15 / 28

Neural Nets Backpropagation

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

for a composite function f(g(w))

∂f

∂w
=
∂f

∂g

∂g

∂w

for a composite function f(g1(w), . . . , gd(w))

∂f

∂w
=

d∑
i=1

∂f

∂gi

∂gi
∂w

the simplest example f(g1(w), g2(w)) = g1(w)g2(w)

16 / 28

Neural Nets Backpropagation

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

for a composite function f(g(w))

∂f

∂w
=
∂f

∂g

∂g

∂w

for a composite function f(g1(w), . . . , gd(w))

∂f

∂w
=

d∑
i=1

∂f

∂gi

∂gi
∂w

the simplest example f(g1(w), g2(w)) = g1(w)g2(w)

16 / 28

Neural Nets Backpropagation

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

for a composite function f(g(w))

∂f

∂w
=
∂f

∂g

∂g

∂w

for a composite function f(g1(w), . . . , gd(w))

∂f

∂w
=

d∑
i=1

∂f

∂gi

∂gi
∂w

the simplest example f(g1(w), g2(w)) = g1(w)g2(w)

16 / 28

Neural Nets Backpropagation

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

for a composite function f(g(w))

∂f

∂w
=
∂f

∂g

∂g

∂w

for a composite function f(g1(w), . . . , gd(w))

∂f

∂w
=

d∑
i=1

∂f

∂gi

∂gi
∂w

the simplest example f(g1(w), g2(w)) = g1(w)g2(w)

16 / 28

Neural Nets Backpropagation

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

for a composite function f(g(w))

∂f

∂w
=
∂f

∂g

∂g

∂w

for a composite function f(g1(w), . . . , gd(w))

∂f

∂w
=

d∑
i=1

∂f

∂gi

∂gi
∂w

the simplest example f(g1(w), g2(w)) = g1(w)g2(w)

16 / 28

Neural Nets Backpropagation

Computing the derivative

Drop the subscript ` for layer for simplicity.

Find the derivative of En w.r.t. to wij

∂En
∂wij

=
∂En
∂ai

∂ai
∂wij

=
∂En
∂ai

∂(wijoj)

∂wij
=
∂En
∂ai

oj

∂En
∂ai

=
∂En
∂oi

∂oi
∂ai

=

(∑
k

∂En
∂ak

∂ak
∂oi

)
h′i(ai) =

(∑
k

∂En
∂ak

wki

)
h′i(ai)

17 / 28

Neural Nets Backpropagation

Computing the derivative

Drop the subscript ` for layer for simplicity.

Find the derivative of En w.r.t. to wij

∂En
∂wij

=
∂En
∂ai

∂ai
∂wij

=
∂En
∂ai

∂(wijoj)

∂wij
=
∂En
∂ai

oj

∂En
∂ai

=
∂En
∂oi

∂oi
∂ai

=

(∑
k

∂En
∂ak

∂ak
∂oi

)
h′i(ai) =

(∑
k

∂En
∂ak

wki

)
h′i(ai)

17 / 28

Neural Nets Backpropagation

Computing the derivative

Drop the subscript ` for layer for simplicity.

Find the derivative of En w.r.t. to wij

∂En
∂wij

=
∂En
∂ai

∂ai
∂wij

=
∂En
∂ai

∂(wijoj)

∂wij

=
∂En
∂ai

oj

∂En
∂ai

=
∂En
∂oi

∂oi
∂ai

=

(∑
k

∂En
∂ak

∂ak
∂oi

)
h′i(ai) =

(∑
k

∂En
∂ak

wki

)
h′i(ai)

17 / 28

Neural Nets Backpropagation

Computing the derivative

Drop the subscript ` for layer for simplicity.

Find the derivative of En w.r.t. to wij

∂En
∂wij

=
∂En
∂ai

∂ai
∂wij

=
∂En
∂ai

∂(wijoj)

∂wij
=
∂En
∂ai

oj

∂En
∂ai

=
∂En
∂oi

∂oi
∂ai

=

(∑
k

∂En
∂ak

∂ak
∂oi

)
h′i(ai) =

(∑
k

∂En
∂ak

wki

)
h′i(ai)

17 / 28

Neural Nets Backpropagation

Computing the derivative

Drop the subscript ` for layer for simplicity.

Find the derivative of En w.r.t. to wij

∂En
∂wij

=
∂En
∂ai

∂ai
∂wij

=
∂En
∂ai

∂(wijoj)

∂wij
=
∂En
∂ai

oj

∂En
∂ai

=
∂En
∂oi

∂oi
∂ai

=

(∑
k

∂En
∂ak

∂ak
∂oi

)
h′i(ai) =

(∑
k

∂En
∂ak

wki

)
h′i(ai)

17 / 28

Neural Nets Backpropagation

Computing the derivative

Drop the subscript ` for layer for simplicity.

Find the derivative of En w.r.t. to wij

∂En
∂wij

=
∂En
∂ai

∂ai
∂wij

=
∂En
∂ai

∂(wijoj)

∂wij
=
∂En
∂ai

oj

∂En
∂ai

=
∂En
∂oi

∂oi
∂ai

=

(∑
k

∂En
∂ak

∂ak
∂oi

)
h′i(ai)

=

(∑
k

∂En
∂ak

wki

)
h′i(ai)

17 / 28

Neural Nets Backpropagation

Computing the derivative

Drop the subscript ` for layer for simplicity.

Find the derivative of En w.r.t. to wij

∂En
∂wij

=
∂En
∂ai

∂ai
∂wij

=
∂En
∂ai

∂(wijoj)

∂wij
=
∂En
∂ai

oj

∂En
∂ai

=
∂En
∂oi

∂oi
∂ai

=

(∑
k

∂En
∂ak

∂ak
∂oi

)
h′i(ai) =

(∑
k

∂En
∂ak

wki

)
h′i(ai)

17 / 28

Neural Nets Backpropagation

Computing the derivative

Adding the subscript for layer:

∂En
∂w`,ij

=
∂En
∂a`,i

o`−1,j

∂En
∂a`,i

=

(∑
k

∂En
∂a`+1,k

w`+1,ki

)
h′`,i(a`,i)

For the last layer, for square loss

∂En
∂aL,i

=
∂(hL,i(aL,i)− yn,i)2

∂aL,i
= 2(hL,i(aL,i)− yn,i)h′L,i(aL,i)

18 / 28

Neural Nets Backpropagation

Computing the derivative

Adding the subscript for layer:

∂En
∂w`,ij

=
∂En
∂a`,i

o`−1,j

∂En
∂a`,i

=

(∑
k

∂En
∂a`+1,k

w`+1,ki

)
h′`,i(a`,i)

For the last layer, for square loss

∂En
∂aL,i

=
∂(hL,i(aL,i)− yn,i)2

∂aL,i

= 2(hL,i(aL,i)− yn,i)h′L,i(aL,i)

18 / 28

Neural Nets Backpropagation

Computing the derivative

Adding the subscript for layer:

∂En
∂w`,ij

=
∂En
∂a`,i

o`−1,j

∂En
∂a`,i

=

(∑
k

∂En
∂a`+1,k

w`+1,ki

)
h′`,i(a`,i)

For the last layer, for square loss

∂En
∂aL,i

=
∂(hL,i(aL,i)− yn,i)2

∂aL,i
= 2(hL,i(aL,i)− yn,i)h′L,i(aL,i)

18 / 28

Neural Nets Backpropagation

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

∂En
∂W`

=
∂En
∂a`

oT`−1

∂En
∂a`

=

{(
WT

`+1
∂En

∂a`+1

)
◦ h′`(a`) if ` < L

2(hL(aL)− yn) ◦ h′L(aL) else

where v1 ◦ v2 = (v11v21, · · · , v1Dv2D) is the element-wise product (a.k.a.
Hadamard product).

Verify yourself!

19 / 28

Neural Nets Backpropagation

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W1, . . . ,WL. Repeat:

1 randomly pick one data point n ∈ [N]

2 forward propagation: for each layer ` = 1, . . . , L
compute a` = W`o`−1 and o` = h`(a`) (o0 = xn)

3 backward propagation: for each ` = L, . . . , 1
compute

∂En
∂a`

=

{(
WT

`+1
∂En

∂a`+1

)
◦ h′`(a`) if ` < L

2(hL(aL)− yn) ◦ h′L(aL) else

update weights

W` ←W` − η
∂En
∂W`

= W` − η
∂En
∂a`

oT`−1

Think about how to do the last two steps properly!

20 / 28

Neural Nets Backpropagation

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W1, . . . ,WL. Repeat:

1 randomly pick one data point n ∈ [N]

2 forward propagation: for each layer ` = 1, . . . , L
compute a` = W`o`−1 and o` = h`(a`) (o0 = xn)

3 backward propagation: for each ` = L, . . . , 1
compute

∂En
∂a`

=

{(
WT

`+1
∂En

∂a`+1

)
◦ h′`(a`) if ` < L

2(hL(aL)− yn) ◦ h′L(aL) else

update weights

W` ←W` − η
∂En
∂W`

= W` − η
∂En
∂a`

oT`−1

Think about how to do the last two steps properly!

20 / 28

Neural Nets Backpropagation

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W1, . . . ,WL. Repeat:

1 randomly pick one data point n ∈ [N]

2 forward propagation: for each layer ` = 1, . . . , L
compute a` = W`o`−1 and o` = h`(a`) (o0 = xn)

3 backward propagation: for each ` = L, . . . , 1
compute

∂En
∂a`

=

{(
WT

`+1
∂En

∂a`+1

)
◦ h′`(a`) if ` < L

2(hL(aL)− yn) ◦ h′L(aL) else

update weights

W` ←W` − η
∂En
∂W`

= W` − η
∂En
∂a`

oT`−1

Think about how to do the last two steps properly!

20 / 28

Neural Nets Backpropagation

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W1, . . . ,WL. Repeat:

1 randomly pick one data point n ∈ [N]

2 forward propagation: for each layer ` = 1, . . . , L
compute a` = W`o`−1 and o` = h`(a`) (o0 = xn)

3 backward propagation: for each ` = L, . . . , 1
compute

∂En
∂a`

=

{(
WT

`+1
∂En

∂a`+1

)
◦ h′`(a`) if ` < L

2(hL(aL)− yn) ◦ h′L(aL) else

update weights

W` ←W` − η
∂En
∂W`

= W` − η
∂En
∂a`

oT`−1

Think about how to do the last two steps properly!
20 / 28

Neural Nets Backpropagation

More tricks to optimize neural nets

Many variants based on backprop

SGD with minibatch: randomly sample a batch of examples to form
a stochastic gradient

SGD with momentum

· · ·

21 / 28

Neural Nets Backpropagation

SGD with momentum

Initialize w0 and velocity v = 0

For t = 1, 2, . . .

form a stochastic gradient gt

update velocity v ← αv − ηgt for some discount factor α ∈ (0, 1)

update weight wt ← wt−1 + v

Updates for first few rounds:

w1 = w0 − ηg1
w2 = w1 − αηg1 − ηg2
w3 = w2 − α2ηg1 − αηg2 − ηg3
· · ·

22 / 28

Neural Nets Backpropagation

SGD with momentum

Initialize w0 and velocity v = 0

For t = 1, 2, . . .

form a stochastic gradient gt

update velocity v ← αv − ηgt for some discount factor α ∈ (0, 1)

update weight wt ← wt−1 + v

Updates for first few rounds:

w1 = w0 − ηg1
w2 = w1 − αηg1 − ηg2
w3 = w2 − α2ηg1 − αηg2 − ηg3
· · ·

22 / 28

Neural Nets Preventing overfitting

Overfitting

Overfitting is very likely since the models are too powerful.

Methods to overcome overfitting:

data augmentation

regularization

dropout

early stopping

· · ·

23 / 28

Neural Nets Preventing overfitting

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

24 / 28

Neural Nets Preventing overfitting

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

24 / 28

Neural Nets Preventing overfitting

Regularization

L2 regularization: minimize

E ′(W1, . . . ,WL) = E(W1, . . . ,WL) + λ

L∑
`=1

‖W`‖22

Simple change to the gradient:

∂E ′

∂wij
=

∂E
∂wij

+ 2λwij

Introduce weight decaying effect

25 / 28

Neural Nets Preventing overfitting

Regularization

L2 regularization: minimize

E ′(W1, . . . ,WL) = E(W1, . . . ,WL) + λ

L∑
`=1

‖W`‖22

Simple change to the gradient:

∂E ′

∂wij
=

∂E
∂wij

+ 2λwij

Introduce weight decaying effect

25 / 28

Neural Nets Preventing overfitting

Regularization

L2 regularization: minimize

E ′(W1, . . . ,WL) = E(W1, . . . ,WL) + λ

L∑
`=1

‖W`‖22

Simple change to the gradient:

∂E ′

∂wij
=

∂E
∂wij

+ 2λwij

Introduce weight decaying effect

25 / 28

Neural Nets Preventing overfitting

Dropout

Randomly delete neurons during training

Very effective, makes training faster as well

26 / 28

Neural Nets Preventing overfitting

Early stopping

Stop training when the performance on validation set stops improvingCHAPTER 7. REGULARIZATION FOR DEEP LEARNING

0 50 100 150 200 250

Time (epochs)

0.00

0.05

0.10

0.15

0.20

L
o
s
s

(
n
e
g
a
t
i
v
e

l
o
g
-
l
i
k
e
l
i
h
o
o
d
)

Training set loss

Validation set loss

Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the data
associated with the different tasks, some are shared across two or more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See figure 7.3 for an example of this
behavior. This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,
hopefully better test set error) by returning to the parameter setting at the point in
time with the lowest validation set error. Every time the error on the validation set
improves, we store a copy of the model parameters. When the training algorithm
terminates, we return these parameters, rather than the latest parameters. The

246

Early stopping

27 / 28

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks

are hugely popular, achieving best performance on many problems

do need a lot of data to work well

take a lot of time to train (need GPUs for massive parallel computing)

take some work to select architecture and hyperparameters

are still not well understood in theory

28 / 28

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks

are hugely popular, achieving best performance on many problems

do need a lot of data to work well

take a lot of time to train (need GPUs for massive parallel computing)

take some work to select architecture and hyperparameters

are still not well understood in theory

28 / 28

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks

are hugely popular, achieving best performance on many problems

do need a lot of data to work well

take a lot of time to train (need GPUs for massive parallel computing)

take some work to select architecture and hyperparameters

are still not well understood in theory

28 / 28

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks

are hugely popular, achieving best performance on many problems

do need a lot of data to work well

take a lot of time to train (need GPUs for massive parallel computing)

take some work to select architecture and hyperparameters

are still not well understood in theory

28 / 28

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks

are hugely popular, achieving best performance on many problems

do need a lot of data to work well

take a lot of time to train (need GPUs for massive parallel computing)

take some work to select architecture and hyperparameters

are still not well understood in theory

28 / 28

	Logistics
	Review of last lecture
	Neural Nets

