CSCI567 Machine Learning (Spring 2021)

Sirisha Rambhatla

University of Southern California

Feb 12, 2021

Outline

© Logistics
© Review of last lecture

© Neural Nets

Outline

© Logistics

Logistics

@ Sign-up with your group members for the project!

Outline

© Review of last lecture

Review of last lecture

Linear Discriminant Analysis
The main bottleneck is not knowing P(X = x|y = ¢)

P(X =aly =Py =c)

Ply=cX =x) = PX = a)

LDA makes two simplifying assumptions:

o Let P(X = x|y =c¢) ~ N (e, X¢), and
o Let all class covariances be the same i.e. ¥, =¥ for all ¢ € [C]

If so, the decision boundary (for binary classification) is given by

Ply=0X=2)=Py=1X==x)
PX=zly=0Py=0)=PX =zly=1)Py=1)

6/ 28

Review of last lecture

What do the decision boundaries look like?

The decision boundaries are a quadratic when X's are not the same, this is
known as Quadratic Discriminant Analysis!

Outline

© Neural Nets
@ Definition
@ Backpropagation
@ Preventing overfitting

Neural Nets

Linear models are not always adequate

s TR IS R N 20
T ey T
e TR g, 15
y ¥ N Pt
BIES DS AGoN N
. s TR T A 03| M -
L .
T ted owtoral w 00 an ® %
T X s °""
et LS N
Fd Wy 03
DS R ..
ey T A T R 10
o T LIS R L H
A T R T S
-3
" E
05 05 15 2555 0 05 0.0 05 10 15 20

We can use a nonlinear mapping as discussed:

¢(x):xeRP - 2 e RM

Neural Nets

Linear models are not always adequate

X e e S 24|
3 ;ﬁ;ﬁ ﬁgsvg M
+ e 4 st
| * ;t" ERE It 5 4
G R N
at e T T 03 N -l
o N
¥ .
T ted owtoral w 00 an ® %
AT IR IS ey s . mte
it (AL .
Fulk g 03|
vt Y }: fﬂp* j:f’m + " . s "
e p T A T R 10
. TIED 48 e +
S R T T
15
4 2
05 05 1 15 2555 0 05 0.0 05 10 15 20

We can use a nonlinear mapping as discussed:

¢(x):xeRP - 2 e RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?

NETTEIRNEEE Definition

Linear models are not always adequate

B R

We can use a nonlinear mapping as discussed:

o)z e RP — z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

9/28

Neural Nets

Linear model as a one-layer neural net

T h(a) = a for linear model

o= h(w"x)

w3

NETTEIRNEEE Definition

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use
Rectified Linear Unit (ReLU): h(a) = max{0,a}
sigmoid function: h(a) =

TanH: h(a) = &=

et+te~a

_1
14+e—@

a

many more

10 / 28

More output nodes

I

2 o=h(Wz)

w

W e R¥3, h i R* = R* s0 h(a) = (hi(a1), ha(az), hs(as), ha(as))

NETTEIRNEEE Definition

More output nodes

T1

Z2 o=h(Wx)

T3

w

W e RY3 bR - RY so h(a) = (h1(a1), ha(ay), hs(as), ha(as))

Can think of this as a nonlinear basis: ®(x) = h(Wx)

11/ 28

More layers

Becomes a network:

input layer hidden layer 1 hidden layer 2 output layer

Neural Nets

More layers

Becomes a network:

@ each node is called a neuron input layer hidden layer 1 hidden layer 2 output layer

NETTEIRNEEE Definition

More layers

Becomes a network:

@ each node is called a neuron input layer hidden layer 1 hidden layer 2 output layer

@ h is called the activation function

o can use h(a) =1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

12 /28

NETTEIRNEEE Definition

More layers

Becomes a network:

o each node is Ca”ed a neuron input layer hidden layer 1 hidden layer 2 output layer

@ h is called the activation function

o can use h(a) =1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

o #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)

12 /28

NETTEIRNEEE Definition

More layers

Becomes a network:

o each node is Ca”ed a neuron input layer hidden layer 1 hidden layer 2 output layer

@ h is called the activation function

o can use h(a) =1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

o #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)

o deep neural nets can have many layers and millions of parameters

12 /28

NETTEIRNEEE Definition

More layers

Becomes a network:
o each node is Ca”ed a neuron input layer hidden layer 1 hidden layer 2 output layer

h is called the activation function
o can use h(a) =1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

#layers refers to #hidden_layers (plus 1 or 2 for input/output layers)

o deep neural nets can have many layers and millions of parameters

this is a feedforward, fully connected neural net, there are many
variants

12 /28

NETTEIRNEEE Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

13 / 28

NETTEIRNEEE Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

13 / 28

Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

o for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

13 / 28

Neural Nets

Math formulation

An L-layer neural net can be written as

f(x)=h (Wrhi_1 (Wi_1- h1 (Wiz)))

NETTEIRNEEE Definition

Math formulation

An L-layer neural net can be written as

F(x)=hL(Wrhi 1 (Wp_1---hy (Wiz)))

input layer hidden layer 1 hidden layer 2 output layer

To ease notation, for a given input x, define recursively

o) = &, ay = WgOg_l, Oy — hg(ag) (f = 1, PN L)
where
o W, € RPexDPe-1 is the weights between layer £ — 1 and /¢
e Dy =D,Dy,...,DL are numbers of neurons at each layer
e ay € RP! is input to layer ¢
e oy € RP¢ is output to layer ¢
e hy: RPr — RDP¢ js activation functions at layer £

14 / 28

Neural Nets

Learning the model

No matter how complicated the model is, our goal is the same: minimize

N
1
EWL,...., W) = NZSH(WL...,WL)
n=1

Neural Nets

Learning the model

No matter how complicated the model is, our goal is the same: minimize

N
1
EWL,...., W) = NZSH(WL...,WL)
n=1

Wi) = 1 (n) = ynll3 for regression
o In (1 + D kg ef("’")k“f(‘”")yn> for classification

Neural Nets

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

Neural Nets

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

sk pisae o)
How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

e for a composite function f(g(w))

of _0fog
ow 9g ow

16 / 28

sk pisae o)
How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

e for a composite function f(g(w))
of _9f9g
ow 9g ow

e for a composite function f(g1(w),...,gq(w))

0f _ <~ 9f 09
ow dg; Ow

i=1

16 / 28

sk pisae o)
How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.
What is the gradient of this complicated function?
Chain rule is the only secret:

e for a composite function f(g(w))

of _0fog
ow 9g ow

e for a composite function f(g1(w),...,gq(w))

0f _ <~ 9f 09
ow P dg; Ow

the simplest example f(g1(w), g2(w)) = g1(w)g2(w)

16 / 28

Neural Nets

Computing the derivative

Drop the subscript £ for layer for simplicity.

Find the derivative of &, w.r.t. to w;;

Neural Nets

Computing the derivative

Drop the subscript £ for layer for simplicity.

Find the derivative of &, w.r.t. to w;;

0E, 9, da;
8w¢j - 6ai 8wij

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of &, w.r.t. to w;;

8gn o 85n (904 - 88n 8(w¢joj)
8wij N 8a7; 8w7;j - 8&1' 8wij

17 / 28

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of &, w.r.t. to w;;

8gn o 8€n (904 - 8Sn 8(w¢joj) . 65'”
8wij N 8a7; 8w7;j - 8@1' 8wij 8&1'

17 / 28

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of &, w.r.t. to w;;

8gn o 8€n (904 - 8Sn 8(w¢joj) . 65'”

8wij N 8a7; 8w7;j 8@1' 8wij N 8&1' Oj
9E, 9, Do
Bai N aOi 8@2'

17 / 28

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of &, w.r.t. to w;;

85n o 8€n (904 - 8Sn 8(w¢joj) . 85'”
8wij N 8a7; 8w7;j - 8@1' 8wij 8ai J

0, 0, 00; o0&, Oay, '
da; Do; Da; <Z Oay, 0o;) (a:)

17 / 28

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of &, w.r.t. to w;;

85n o 8€n (904 - 8Sn 8(w¢joj) . 8€n
8wij N 8a7; 8w7;j - 8@1' 8wij 8ai J

8871 o agn 602 . 85 8ak N % ' o
aai - aoi 8@2 <Z aak 80) ’L) - (- aakwk‘l> hi(az)

17 / 28

Neural Nets

Computing the derivative

Adding the subscript for layer:

o, 0&, o .
311)“]' N aag’i =L
o€ o€,
L w i | R (ap;
Oay,; (— dagik HM) eilae)

Computing the derivative

Adding the subscript for layer:

oE, 0&,
8’11)@72‘3' - 8&@71'

i | hoi(aes
8@[1 (Z Oagyq, kal’k) tiloes)

For the last layer, for square loss

0, A(hiilaLi) — yni)®

8aL,Z~ 8CL|_7Z‘

18 / 28

Computing the derivative

Adding the subscript for layer:

oE, 0&,
8’11)@72‘3' - 8&@71'

i | hoi(aes
8@[1 (Z Oagyq, kal’k) tiloes)

For the last layer, for square loss

0, O(hii(aL;) — Yny)?
(9a|_,i - 8aL,i) = 2(h|—ai(a|_,i) - y”,i)ht,i(aL,i)

18 / 28

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

0E, 0&n T
oW, Oda, 1

. (Wﬁl aifﬁ) ohj(a)) ifl<L
Oay 2(hi(aL) —yn)ohi(ar) else

where v1 0o v = (v11V21, - , U1pV2D) IS the element-wise product (a.k.a.
Hadamard product).

Verify yourself!

19 / 28

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W1, ..., W|. Repeat:
@ randomly pick one data point n € [N]

sy
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W_. Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer / =1,...,L
o compute ay = Wyo,—1 and oy = hy(ay) (0p = x,)

20/ 28

Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W_. Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer / =1,...,L
o compute ay = Wyo,—1 and oy = hy(ay) (0p = x,)

© backward propagation: foreach /= 1L,...,1
e compute

0, {(WE+1 %) ohj(a) ifL<L
2

Z=n dagi1
Oay (hi(ar) —yn) o h{(ar) else

e update weights

o€ 0,

Wg — Wg — UTWZ = Wg — ’r]aiazoe_l

20/ 28

Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W_. Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer / =1,...,L
o compute ay = Wyo,—1 and oy = hy(ay) (0p = x,)

© backward propagation: foreach /= 1L,...,1
e compute

98, _ [(Whio)ohi(ar) ifL<L
Oay 2(hi(aL) —yn) o hi(ar) else
e update weights

o, 0, T
Tow, = V' M, O
Think about how to do the last two steps properly!

Wg(—Wg—

20/ 28

More tricks to optimize neural nets

Many variants based on backprop

@ SGD with minibatch: randomly sample a batch of examples to form
a stochastic gradient

e SGD with momentum

21 /28

SGD with momentum

Initialize wg and velocity v =0
Fort=1,2,...
e form a stochastic gradient g;
@ update velocity v «+— av — ng; for some discount factor o € (0, 1)

@ update weight wy + wy_1 + v

22 /28

SGD with momentum

Initialize wg and velocity v =0
Fort=1,2,...
e form a stochastic gradient g;
@ update velocity v «+— av — ng; for some discount factor o € (0, 1)

@ update weight wy + wy_1 + v

Updates for first few rounds:
® wi; = wo — Ngi
¢ Wy = w1 —ang: — 1Ng2
o w3 = wy — a’ng1 — angs — g3
@ -

22 /28

R Lo
Overfitting

Overfitting is very likely since the models are too powerful.

Methods to overcome overfitting:

data augmentation
regularization
dropout

early stopping

23 /28

Neural Nets

Data augmentation

Data: the more the better. How do we get more data?

Neural Nets

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

Affine . Elastic
Distortion Noise Deformation

Horizontal Random

flip Translation Hue Shit

Neural Nets

Regularization

L2 regularization: minimize

L
EWi,..., W) =EWr,...,WL) + A W3
=1

Neural Nets

Regularization

L2 regularization: minimize

L
EWi,..., W) =EWr,...,WL) + A W3
=1

Simple change to the gradient:

o0&’ o€

2
3wz j 8wz j +eAwi

Neural Nets

Regularization

L2 regularization: minimize

L
gl(Wla . 'vWL) = S(WL (R WL) + AZ ”WZ”%
=1

Simple change to the gradient:

o0&’ o€

22
B, By

Introduce weight decaying effect

Neural Nets Preventing overfitting

Dropout

Randomly delete neurons during training

Very effective, makes training faster as well

26 / 28

R Lo
Early stopping

Stop training when the performance on validation set stops improving

/ Early stopping
0.20

—~ T T T
3 e—e Training set loss
= 015 — Validation set loss |
<
=
= 0.10 4
£
=2
®
a0
€ 0.05 | B
]
=}
- 0.00 " " "
0 50 100 150 200 250

Time (epochs)

27 / 28

Neural Nets

Conclusions for neural nets

Deep neural networks

@ are hugely popular, achieving best performance on many problems

Neural Nets

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems

@ do need a /ot of data to work well

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well

@ take a /ot of time to train (need GPUs for massive parallel computing)

28 /28

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well
@ take a /ot of time to train (need GPUs for massive parallel computing)

@ take some work to select architecture and hyperparameters

28 /28

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well
@ take a /ot of time to train (need GPUs for massive parallel computing)
@ take some work to select architecture and hyperparameters

@ are still not well understood in theory

28 /28

	Logistics
	Review of last lecture
	Neural Nets

