
Provably Learning from Data: New Algorithms and Models for
Matrix and Tensor Decompositions

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Sirisha Rambhatla

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Prof. Jarvis Haupt

September, 2019

© Sirisha Rambhatla 2019

ALL RIGHTS RESERVED

Acknowledgements

It is a beautiful thing to come across an idea worth pursuing. However, after the initial

euphoria, it is just hard work and assiduity that nurture it and bring it to life. I find

myself to be extremely lucky to have come across such ideas, to have had the leisure to

devote time to inquiry and discovery, and to have made it past the “finish line” (if there

is such a thing). For the gift of this journey, I thank my advisor, Prof. Jarvis Haupt.

I have also been extremely fortunate to have Prof. Georgios Giannakis, Prof. Nikos

Papanikolopoulos, and Prof. Mingyi Hong on my Ph.D. exam committee. Their feed-

back essentially changed what I planned to do with my doctoral degree. I am also

fortunate that my time here overlapped with Prof. Nikos Sidiropoulos, who has moti-

vated my work directly and indirectly through his teaching and encouragement.

I would also like to thank my lab-mates over the years, who kept the atmosphere in

the lab collaborative and welcoming. Numerous “I have a question...” were always met

with an excited “Sure!”. Special mentions include Xingguo, Mojtaba, Swayambhoo,

Alex, Abhinav, Gamini, and Akshay. Also special thanks to Minnesota Supercomput-

ing Institue (MSI) for their super-computing resources which made my work possible.

I also take this opportunity to thank my family – my mom, dad, sister, and brother-

in-law, my very cheerful in-laws, and the rest of the extended family. Special thanks

to my sister for sending me pictures and videos of my nephew and niece.

I am grateful to my friends Aditi, Congnan, Jen, Kadambari, Pavan, Anubhav,

Vikrant, Anki, and Jared, who kept me in check with reality, and provided me with

much needed excuses to have fun. Special thanks to Shelley and Miles, my mentors at

Robins Kaplan for their support and encouragement. I’d also like to thank the wonder-

ful folks at Alma Cafe (especially Cameron) for their kindness and exceptional espres-

sos, and the Hennepin County Library system for their extensive collection of books.

To the super-wise (and calm) person who listened to the daily ups and downs, my

companion on this journey: Yash – Thank you!

i

To the not known.

ii

Abstract

Learning and leveraging patterns in data has fueled the recent advances in data

driven services. As these solutions become more ubiquitous, and get incorporated into

critical applications in healthcare and transportation, there is an increasing need to un-

derstand the limits of these learning algorithms and to develop algorithms with guar-

antees. Moreover, with data being generated at unprecedented rates, these algorithms

need to be fast, learn on-the-fly (online), handle large volumes of data (scalable), and

be computationally efficient, while possessing guarantees on their behavior. Further-

more, to make the learning-based products widely applicable there is also a need to

make their reasoning and decision making process transparent (interpretable).

These challenges inspire and motivate this dissertation. Specifically, we focus on

analyzing various matrix/tensor demixing and factorization tasks, where we leverage

the inherent interpretability endowed by the structure of problem (such as sparsity

and low-rankness) to characterize the (theoretical) conditions for successful recovery,

and analyze their performance in real-world settings.

To this end, we make contributions on three fronts. First, we develop algorithm-

aware theoretical guarantees for sparse matrix and tensor factorization tasks. Second,

we establish algorithm-agnostic theoretical results for matrix demixing models and

demonstrate their applications on real-world datasets. Lastly, we develop application-

specific techniques for navigation and source separation. Bringing together Algo-

rithms, Theory, and Applications, the techniques and theoretical results developed

as part of this dissertation facilitate and motivate future explorations into the inner

workings of learning algorithms for their safe use in critical applications.

iii

Contents

Acknowledgements i

Abstract iii

List of Tables x

List of Figures xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Doctoral Research Contributions . 4

1.2.1 Early Motivations: Semi-blind source separation 4

1.2.2 Dictionary-based generalization of Robust PCA 6

1.2.3 Provable Algorithm for Dictionary learning 7

1.2.4 Provable Structured Tensor Factorization 8

1.2.5 Lidar-Based Topological Mapping and Localization 8

1.3 Organization . 9

1.4 Notation . 9

I Algorithm-Aware Matrix and Tensor Factorization 11

2 Provable Online Dictionary Learning and Sparse Coding 12

2.1 Overview . 12

2.2 Introduction . 13

2.2.1 Summary of Our Contributions 14

2.2.2 Related Works . 15

iv

2.3 Algorithm . 17

2.4 Main Result . 19

2.5 Neural implementation of NOODL . 22

2.6 Experiments . 24

2.6.1 Convergence Analysis . 24

2.6.2 Phase transitions . 25

2.7 Future Work . 25

2.8 Conclusions . 26

Appendices 27

2.A Summary of Notation . 27

2.B Proof of Theorem 2.1 . 27

2.C Appendix: Proof of Lemmas . 35

2.D Appendix: Proofs of intermediate results 53

2.E Additional Experimental Results . 71

2.E.1 Coefficient Recovery . 72

2.E.2 Computational Time . 72

2.F Appendix: Standard Results . 74

2.F.1 Concentration results . 75

2.F.2 Results from (Arora et al., 2015) 76

3 Provable Structured Tensor Factorization via Dictionary Learning 77

3.1 Overview . 77

3.2 Introduction . 78

3.2.1 Overview of the algorithm . 79

3.2.2 Contributions . 80

3.2.3 Related works . 81

3.3 Problem Formulation . 83

3.4 Algorithm . 84

3.5 Main Result . 86

3.6 Numerical Simulations . 90

3.7 Discussion and Conclusions . 91

v

Appendices 93

3.A Summary of Notation . 93

3.B Proof of Theorem 1 . 93

3.C Proof of Intermediate Results . 101

3.D Additional Theoretical Results . 106

3.E Experimental Set-up and Additional Experimental Results 107

3.E.1 Experimental Set-up . 107

3.E.2 Additional Results . 110

II Algorithm-Agnostic Matrix Demixing 114

4 Dictionary-based Generalization of Robust PCA 115

4.1 Overview . 115

4.2 Introduction . 115

4.2.1 Background . 117

4.2.2 Our Contributions . 118

4.3 Preliminaries . 120

4.3.1 Optimality of the Solution Pair 120

4.3.2 Conditions on the Dictionary . 120

4.3.3 Relevant Subspaces . 121

4.3.4 Incoherence Measures and Other Parameters 122

4.4 Main Results . 124

4.4.1 Exact Recovery for Entry-wise Sparsity Case 124

4.4.2 Exact Recovery for Column-wise Sparsity Case 125

4.5 Numerical Simulations . 127

4.5.1 Entry-Wise Sparsity Case . 128

4.5.2 Column-wise Sparsity Case . 130

4.6 Conclusions and Future Work . 131

Appendices 133

4.A Summary of Notation . 133

4.B Proof of Main Results . 133

4.B.1 Proofs for Entry-wise Case: Proof of Theorem 4.1 133

4.B.2 Proofs for Column-wise Case: Proof of Theorem 4.2 139

vi

4.C Proofs of Intermediate Results . 142

4.C.1 Proofs for Entry-wise Case . 142

4.C.2 Proofs for Column-wise Case . 149

5 Target Localization in Hyperspectral Images 155

5.1 Overview . 155

5.2 Introduction . 156

5.2.1 Model . 156

5.2.2 Our Contributions . 157

5.2.3 Prior Art . 159

5.2.4 Related Techniques . 160

5.3 Problem Formulation . 162

5.3.1 Optimization problems . 162

5.3.2 Conditions on the Dictionary . 164

5.3.3 Relevant Subspaces . 164

5.3.4 Incoherence Measures . 165

5.4 Theoretical Results . 167

5.4.1 Exact Recovery for Entry-wise Sparsity Case 167

5.4.2 Recovery for Column-wise Sparsity Case 168

5.5 Algorithmic Considerations . 170

5.5.1 Background . 170

5.5.2 Discussion of Algorithm 4 . 170

5.5.3 Parameter Selection . 172

5.6 Experimental Evaluation . 174

5.6.1 Data . 174

5.6.2 Dictionary . 175

5.6.3 Experimental Setup . 177

5.6.4 Parameter Setup for the Algorithms 179

5.6.5 Analysis . 182

5.7 Conclusions . 184

vii

III Application-Focused Techniques 185

6 Lidar-Based Topological Mapping and Localization via Tensor Decomposi-

tions 186

6.1 Overview . 186

6.2 Introduction . 187

6.2.1 Prior-Art . 188

6.2.2 Summary of Our Technique . 188

6.2.3 Our Contributions . 189

6.3 Problem formulation . 190

6.3.1 Modeling Lidar data as a Tensor 190

6.3.2 Building TensorMap . 191

6.3.3 Localizing in TensorMap . 192

6.3.4 Memory Considerations . 192

6.4 Numerical Evaluations . 193

6.4.1 Experimental Set-up . 193

6.4.2 Selecting the Parameters . 194

6.4.3 Results . 194

6.4.4 Effect of Gaussian noise and Translations 195

6.4.5 Compression Ratio . 196

6.4.6 Other Applications and Future Work 196

6.5 Conclusions . 196

IV Tools 198

7 Software Resources 199

7.1 Reproducible Research . 199

7.2 Software Packages Developed . 199

7.2.1 NOODL: Neurally plausible alternating Optimization-based On-

line Dictionary Learning . 199

7.2.2 TensorNOODL: NOODL for Structured Tensor Decomposition . 200

7.2.3 D-RPCA: Dictionary-based Robust PCA 200

7.2.4 TensorMap: Lidar-Based Topological Mapping and Localization

via Tensor Decompositions . 200

viii

8 Discussion and Future Work 201

8.1 Discussion . 201

8.2 Future Work . 202

References 205

Appendix A. Acronyms 222

ix

List of Tables

2.1 Comparison of provable algorithms for dictionary learning. 16

2.A.1Frequently used symbols . 28

2.B.1Proof map: dependence of results. 36

2.E.1Final error in recovery of the factors by various techniques and the com-

putation time taken per iteration (in seconds) corresponding to Fig. 2.2

across techniques. We report the coefficient estimate after the HT step

(in Arora et al. (2015)) as XHT. For the techniques presented in Arora

et al. (2015), we scan across 50 values of the regularization parame-

ter for coefficient estimation using Lasso after learning the dictionary

(A), and report the optimal estimation error for the coefficients (XLasso),

while for Mairal ‘09, at each step the coefficients estimate is chosen by

scanning across 10 values of the regularization parameters. For k = 100,

the algorithms of Arora et al. (2015) do not converge (shown as N/A). . 73

3.1 Comparison of provable algorithms for tensor factorization and dictio-

nary learning. As shown here, the existing provable tensor factorization

techniques do not apply to the case where A: incoherent, (B,C): sparse.

We use dictionary learning to develop a provable algorithm. 81

3.A.1Frequently used symbols: Definitions of Probabilities 94

3.A.2Frequently used symbols: Notation and Parameters 95

3.E.1Choosing the step-size (ηA) for the dictionary update step. The dictio-

nary update step-size parameter (ηA) is set to be the same for TensorNOODL,

Arora(b), and Arora(u) depending upon the choice of rank m, and

probabilities (α,β), according to assumption A.5. 108

x

3.E.2Tensor factorization results α,β = 0.005 averaged across 3 trials. Here,

T (supp(X̂)) field shows the number of iterations T to reach the target

tolerance, while the categorical field, supp(X̂) indicates if the support of

the recovered X̂ matches that of X∗ (Y) or not (N). 111

3.E.3Tensor factorization results α,β = 0.01 averaged across 3 trials. Here,

T (supp(X̂)) field shows the number of iterations T to reach the target

tolerance, while the categorical field, supp(X̂) indicates if the support of

the recovered X̂ matches that of X∗ (Y) or not (N). 112

3.E.4Tensor factorization results α,β = 0.05 averaged across 3 trials. Here,

T (supp(X̂)) field shows the number of iterations T to reach the target

tolerance, while the categorical field, supp(X̂) indicates if the support of

the recovered X̂ matches that of X∗ (Y) or not (N). 113

4.A.1Summary of important notation and parameters 134

5.1 Entry-wise sparsity model for the Indian Pines Dataset. Simulation re-

sults are presented for our proposed approach (D-RPCA(E)), robust-

PCA based approach on transformed data D†M (RPCA†), matched fil-

tering (MF) on original data M, and matched filtering on transformed

data D†M (MF†), across dictionary elements d, and the regularization

parameter for initial dictionary learning procedure ρ; see Algorithm 5

. Threshold selects columns with column-norm greater than threshold

such that AUC is maximized. For each case, the best performing metrics

are reported in bold for readability. Further, “ ∗” denotes the case where

ROC curve was “flipped” (i.e. classifier output was inverted to achieve

the best performance). 179

5.2 Entry-wise sparsity model and Pavia University Dataset. Simulation re-

sults are presented for the proposed approach (D-RPCA(E)), robust-PCA

based approach on transformed data (RPCA†), matched filtering (MF)

on original data M, and matched filtering on transformed data D†M

(MF†), across dictionary elements d, and the regularization parameter

for initial dictionary learning step ρ. Threshold selects columns with

column-norm greater than threshold such that AUC is maximized. For

each case, the best performing metrics are reported in bold for readabil-

ity. Further, “ ∗ ” denotes the case where ROC curve was “flipped” (i.e.

classifier output was inverted to achieve the best performance). 180

xi

5.3 Column-wise sparsity model and Indian Pines Dataset. Simulation re-

sults are presented for the proposed approach (D-RPCA(C)), Outlier

Pursuit (OP) based approach on transformed data (OP†), matched filter-

ing (MF) on original data M, and matched filtering on transformed data

D†M (MF†), across dictionary elements d, and the regularization param-

eter for initial dictionary learning step ρ. Threshold selects columns

with column-norm greater than threshold such that AUC is maximized.

For each case, the best performing metrics are reported in bold for read-

ability. Further, “ ∗ ” denotes the case where ROC curve was “flipped”

(i.e. classifier output was inverted to achieve the best performance). . . 181

5.4 Column-wise sparsity model and Pavia University Dataset. Simulation

results for the proposed approach (D-RPCA(C)), Outlier Pursuit (OP)

based approach (OP†), matched filtering (MF) on original data M, and

matched filtering on transformed data D†M (MF†), across dictionary el-

ements d, and the regularization parameter for initial dictionary learn-

ing step ρ. Threshold selects columns with column-norm greater than

threshold such that AUC is maximized. For each case, the best perform-

ing metrics are reported in bold for readability. Further, “∗” denotes the

case where ROC curve was “flipped” (i.e. classifier output was inverted

to achieve the best performance). 182

A.1 Acronyms . 222

xii

List of Figures

1.1 Need for interpretable models and algorithms with guarantees 1. 2

1.2 Overview of research efforts in relation to the three pillars of contempo-

rary learning problems – Algorithms, Theoretical Guarantees, and Ap-

plications. The edges indicate specific problems at the intersection of

these pillars. My research contributions are highlighted in yellow (hy-

perlinked to specific chapters of this dissertation). 4

2.1 A neural implementation of NOODL. Panel (a) shows the neural archi-

tecture, which consists of three layers: an input layer, a weighted resid-

ual evaluation layer (evaluates ηx
(
y(j) − A(t)x(r)

(j)

)
), and an output layer.

Panel (b) shows the operation of the neural architecture in panel (a).

The update of x(r+1)
(j) is given by (2.4). 23

2.2 Comparative analysis of convergence properties. Panels (a-i), (b-i), (c-

i), and (d-i) show the convergence of NOODL, Arora15(‘‘biased’’),

Arora15(‘‘unbiased’’) and Mairal ‘09, for different sparsity levels for

n = 1000, m = 1500 and p = 5000. Since NOODL also recovers the co-

efficients, we show the corresponding recovery of the dictionary, coef-

ficients, and overall fit in panels (a-ii), (b-ii), (c-ii), and (d-ii), respec-

tively. Further, panels (e-i) and (e-ii) show the phase transition in sam-

ples p (per iteration) with the size of the dictionary m averaged across

10 Monte Carlo simulations for the two factors. Here, n = 100, k = 3,

ηx = 0.2, τ = 0.1, ε0 = 2/ log(n), ηA is chosen as per A.5. A trial is con-

sidered successful if the relative Frobenius error incurred by Â and X̂ is

below 5× 10−7 after 50 iterations. 25

3.1 The structured tensor Z∈ R
n×J×K considered in this work. The tensor

has a few mode-1 fibers which are dense. 78

xiii

3.2 Problem Formulation: The dense columns of the structured tensor Z∈
R
n×J×K are collected in a matrix (Y). The matrix Y is viewed as arising

from a dictionary learning model. 83

3.1 Dependence induced by the transposed Khatri-Rao structure. 87

3.1 Data samples required by TensorNOODL using the number of iterations

for convergence (see footnote 6). Panels (a), (b), and (c) show the num-

ber of iterations taken by TensorNOODL to achieve a target tolerance of

10−10 for A for J = K = 100, 300, and 500, respectively across the choices

of rank m = {50, 150, 300, 450, 600} and α = β = {0.005, 0.01, 0.05}, av-

eraged across three Monte Carlo runs. 91

4.1 Recovery for varying rank of L, sparsity of S and number of dictionary

elements in D as per Theorem 4.1. Each plot shows average recovery

across 10 trials for varying ranks and sparsity up to smax
e = m, where

n = m = 100 and the white region represents correct recovery. We de-

cide success if ‖L − L̂‖F/‖L‖F ≤ 0.02 and ‖S − Ŝ‖F/‖S‖F ≤ 0.02, where L̂ and Ŝ

are the recovered L and S, respectively. Panels (a)-(b) show the recovery

of the low-rank part L and (c)-(d) show the recovery of the sparse part

with varying dictionary sizes d = 5 and 150, respectively. Also, the pre-

dicted trend between rank r and sparsity se as per Theorem 4.1, eq.(4.9)

is shown in red in panels (a-b). 127

4.2 Recovery for varying rank of L, sparsity of S and number of dictionary

elements in R. Panels (a)-(b) show the recovery of the low-rank part L

and (c)-(d) show the recovery of the sparse part with varying dictionary

sizes d = 5 and 150, respectively. The experimental set-up and the suc-

cess metric remains the same as in Fig. 4.1. 128

4.3 Comparison of phase transitions in rank and sparsity between D-RPCA(E)

and RPCA† for recovery of S for different dictionary sizes. Panels (a)

and (b) correspond to d = 5 and d = 50, respectively. Experimental set-

up and the success metric remains same as Fig. 4.2. The area in green

corresponds to recovery by RPCA† where at least 1 out of the 10 Monte-

Carlo trials succeeds. 129

xiv

4.4 Phase transitions in rank r and column sparsity sc across 10 Monte-Carlo

simulations. Panels (a), (b), (c) show the precision i.e., (True Positives

/(True Positives + False Positives)) in identifying the outlier columns of

S for d = 50 using (a) OP and (b) OP†, and D-RPCA(C) for d = 150,

respectively. In addition, panel (b) also shows the performance by OP†

for d = 50 in green, marking the region where precision is greater than 0,

super imposed over D-RPCA(C). Here, we threshold the column norms

of the recovered matrix S at 2×10−3 before computing the precision, and

a trial is declared successful if it achieves a precision of 0.99 or higher. . 131

5.1 The HS image data-cube corresponding to the Indian Pines dataset. . . 157

5.2 Correlated spectral signatures. The spectral signatures of even different

materials are highly correlated. Shown here are spectral signatures of

classes from the Indian Pines dataset (Baumgardner et al., 2015). Here,

the shaded region shows the lower and upper ranges of reflectance val-

ues the signatures take. 158

5.1 Ground-truth classes in the datasets. Panels (a) and (b) show the ground

truth classes for the Indian Pines dataset (Baumgardner et al., 2015) and

Pavia University dataset (Gamba, 2002), respectively. 174

5.2 Recovery of the low-rank component L and the dictionary sparse com-

ponent DS for different values of λ for the proposed technique at f =

50-th channel of the (Baumgardner et al., 2015) (shown in panel (a)) cor-

responding to the results shown in Table 5.1(c). Panel (b) corresponds to

the ground truth for class-16. Panel (c) and (d) show the recovery of the

low-rank part and dictionary sparse part for a λ at the best operating

point. While, panels (e) and (f) show the recovery of these components

at λe = 85% of λmax
e . Here, λmax

e denotes the maximum value λe can

take; see Section 5.5.3. 183

6.1 The Ford Dataset (Pandey et al., 2011). Panels (a) and (b) show the tra-

jectory traced by the vehicle, and nodes of a representative topological

map (in red), respectively. 187

xv

6.2 Learning the topological map. We represent each 3-D point cloud cor-

responding to each Lidar scan (a), as a matrix (b) after conversion to

polar coordinates. We aggregate the matricized scans to form length-k

segment tensors X`, and learn the orthogonal Tucker3 models on each

of these (shown in panels (c) and (d)). 189

6.3 Localizing based on a scan. Each test scan, after matricization (as de-

scribed in Section 6.3.3), is processed by each U` and V` to form “sig-

natures” G̃`, which are then compared (in Frobenius norm sense) to the

core tensors G` of TensorMap for best match. 190

6.1 Effect of choice of {r1, r2, k} on the performance accuracy. Panels (a-d)

show the effect of choice of segment lengths k and varying r1 for fixed

r2 = 5,10,15, and 25, respectively. Similarly, panels (e-h) show the effect

of choice of segment lengths kand r2 for fixed r1 = 5,10,15, and 25, re-

spectively. Here, segment lengths k considered are 50,100,200,475, and 760.

Panels (i)-(m) show the nodes for each segment corresponding to choice

of k (in red), with the start/end point of the path denoted in green. . . 191

6.1 Performance of TensorMap on the Ford Dataset with {r1, r2, k} chosen as

{5,5,760}, respectively. Panel (a) shows the classification of test scans

into segments. The corresponding surrogate for velocity (blue), the de-

cision of vehicle movement (green), and the errors made by TensorMap

(red) are shown in panel (b). Notice how majority of the errors occur

when the vehicle is stationary. Panels (c) and (f) show the relative er-

ror between the original segment tensor and the model learnt by Ten-

sorMap. Panel (d) shows the scan classification performance of the tech-

nique, actual test set (blue) the closest (Frobenius norm) train set scan

found by TensorMap. The corresponding decision of vehicle movement

(green) and the errors made (red) are shown in (e). Panel (g) shows the

confusion matrix corresponding to the classification of test scans to seg-

ments shown in (a), and (h) shows the nodes of TensorMap (red) super-

imposed on the actual map (blue). 193

6.2 Effect of two types of noise on accuracy. (a) Effect of zero-mean Gaussian

noise of variance σ2, added to each point, and (b) effect of translations

(in meters) to the right (simulated). 195

xvi

8.1 Future Work: Developing analysis for a one layer Sparse Autoencoder.

Figure shows how each sample of the data is processed by first forming

a latent space (sparse) representation. Next, the discrepancy between

the input y and the output ŷ is used to update the weights (dictionary

elements). 203

xvii

Chapter 1

Introduction

1.1 Motivation

Machine learning and artificial intelligence (AI) related products are emerging as the

drivers of the technological and economic development of the next few decades1. As

these algorithm become the core technologies from being ancillary tools, researchers,

lawmakers, and businesses are grappling with how this trend will shape our future.

On one hand where e-commerce services have embraced the advancements in the

area, fields like transportation, security, medicine, finance, legal, military, and other

critical industries have been cautiously optimistic. The reservations to incorporate lat-

est techniques can be attributed, in part, to the opaque decision making process em-

ployed by some of these techniques and the lack of associated theoretical guarantees.

We are only beginning to understand what blackbox learning solutions (e.g. convo-

lutional neural networks) learn (Geirhos et al., 2019); the cautionary tales of using such

tools for critical tasks such as melanoma recognition illustrate the challenges (Winkler

et al., 2019). Specifically, in such applications the quality of a prediction/decision is

also dependent on 1) how well the underlying process is understood, 2) knowing why

a solution was reached, 3) when these techniques succeed/fail, and 4) if the algorithm

has seen sufficient examples to make a decision. In essence, we need interpretatbility

and guarantees on performance.

1Louis Columbus “10 Charts That Will Change Your Perspective On Artificial Intelligence’s Growth”
Forbes(Jan. 12, 2018).

1

https://www.forbes.com/sites/louiscolumbus/2018/01/12/10-charts-that-will-change-your-perspective-on-artificial-intelligences-growth

2

Figure 1.1: Need for interpretable models and algorithms with guarantees 8.

As a result, notwithstanding the empirical success, understanding learning algo-

rithms and their limitations has emerged as the primary challenge to expand the suc-

cess of these techniques to a wide array of fields2. Recent calls for explainable AI,

such as DARPA’s “Explainable Artificial Intelligence (XAI)” program (Fig. 1.1) resonate

with these goals 3. Arguably, deploying such techniques in even “non-critical” appli-

cations, such as search engines, recommender systems, social-media applications, and

chat-bots pose significant risk to civil liberties 4 5 6 7.

Given the potential impact on applications requiring interpretability as well as

guarantees for their safe operation, there is an urgent need to develop alternative al-

gorithms and architectures that achieve these goals. To address this gap, we analyze

matrix and tensor decomposition models to develop practical algorithms with guaran-

tees for various learning tasks.

We present a case of Safe AI, wherein interpretability (built via priors such as low-

rankness and sparsity) and guaranteed algorithms are leveraged to bring transparency

2Will Knight, “The Dark Secret at the Heart of AI”, MIT Tech Review (April 11, 2017).
3Dr. Matt Turek, “Explainable Artificial Intelligence (XAI)” Defence Advanced Research Projects

Agency (DARPA).
4Conor Dougherty, “Google Photos Mistakenly Labels Black People Gorillas”, New York Times (July

1, 2015).
5Max Fisher and Amanda Taub, “On YouTube’s Digital Playground, an Open Gate for Pedophiles”,

New York Times (June 3, 2019).
6Niraj Chokshi, “Facial Recognitions Many Controversies, From Stadium Surveillance to Racist Soft-

ware”, New York Times (May 15, 2019).
7Daniel Victor, “Microsoft Created a Twitter Bot to Learn From Users. It Quickly Became a Racist

Jerk.”, New York Times (March 24, 2016).
8DARPA’s Explainable Artificial Intelligence (XAI).

https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/
https://www.darpa.mil/program/explainable-artificial-intelligence
https://bits.blogs.nytimes.com/2015/07/01/google-photos-mistakenly-labels-black-people-gorillas/
https://www.nytimes.com/2019/06/03/world/americas/youtube-pedophiles.html
https://www.nytimes.com/2019/05/15/business/facial-recognition-software-controversy.html
https://www.nytimes.com/2019/05/15/business/facial-recognition-software-controversy.html
https://www.nytimes.com/2016/03/25/technology/microsoft-created-a-twitter-bot-to-learn-from-users-it-quickly-became-a-racist-jerk.html?_r=0&module=inline
https://www.nytimes.com/2016/03/25/technology/microsoft-created-a-twitter-bot-to-learn-from-users-it-quickly-became-a-racist-jerk.html?_r=0&module=inline
https://www.darpa.mil/program/explainable-artificial-intelligence

3

and reliability to the decision making process. Our specific contributions aim at estab-

lishing guarantees for algorithm-aware and algorithm-agnostic techniques to charac-

terize the conditions under which the quantities of interest can be recovered.

For instance, we consider the inherently non-convex optimization task of matrix

factorization (dictionary learning) in Section 1.2.3 and Chapter 2, wherein we present a

guaranteed scalable online algorithm for this factorization task. Dictionary learning is

extensively used in healthcare applications in electroencephalogram (EEG) (Barthélemy

et al., 2013), electrocardiogram (ECG) (Mailhé et al., 2009), Magnetic Resonance Imag-

ing (MRI) (Huang et al., 2014), functional MRI (f-MRI) (Lee et al., 2010), and Ultra-

sound Tomography (UST) (Tosic et al., 2010) for denoising, classification, and cluster-

ing tasks. While convex relaxation-based alternating minimization techniques (such as

Mairal et al. (2009)) have been a staple for these applications, they only offers limited

convergence guarantees.

In addition to explaining the success of popular alternating minimization-based

heuristics, our analysis exposes the gaps in existing provable techniques that only fo-

cus on recovering one of the factors (the dictionary); these techniques assume that the

other factor (the sparse factor) using a separate estimation algorithm after dictionary

recovery (Arora et al., 2014, 2015; Agarwal et al., 2014). However, since sparse factor

estimation is heavily dependent on the dictionary estimate, any non-negligible error

in the dictionary can preclude us from recovering the sparse factor (even recovering

its support). Further since sparse factor recovery can be crucial for a downstream clas-

sification and clustering task in critical applications, relying on heuristics with limited

guarantees, or provable algorithm which do not provide guarantees for sparse factor

recovery may prove to be unrealiable.

To this end, our algorithm recovers both unknown factors (under conditions on

the initialization, sparsity and incoherence) by considering the hard-constrained (`0)

task. In addition to providing exact recovery guarantees, it is also scalable and can be

implemented in neural architectures; see Section 1.2.3 and Chapter 2 for details. In

the next section, we summarize our specific contributions towards our motivating goal

of Safe AI.

4

Algorithms

Learning Problem

Ecosystem

Application-Focused Alg
or

ith
m

-A
gn

os
tic

Algorithm-Aware

Provable Online
Dictionary Learning

Provable Structured
Tensor Factorization

Dictionary-based
Generalization
of Robust PCA

Target Localization in
Hyperspectral Images

Lidar-Based Topological
Mapping and Localization

Semi-Blind
Source Separation

Theoretical

Guarantees

Applications

Time
Complexity

Implementation

Sample
Complexity

Har
dwar

e

Consid
er

ati
ons

Convergence

Parameter
Recom-

mendation

Phase
Transitions

Healthcare, Navigation, Remote
Sensing, Finance, Legal, Military

Recommender Systems,
Advertising, Content Ranking

Critical Non-Critical

Figure 1.2: Overview of research efforts in relation to the three pillars of contemporary learn-
ing problems – Algorithms, Theoretical Guarantees, and Applications. The edges indicate spe-
cific problems at the intersection of these pillars. My research contributions are highlighted in
yellow (hyperlinked to specific chapters of this dissertation).

1.2 Doctoral Research Contributions

Motivated from the learning-algorithm exigency outlined above, my doctoral work

touches upon what I identify as the three pillars of the contemporary learning prob-

lem ecosystem, namely, 1) Algorithms, 2) Applications, and 3) Theoretical Guarantees,

shown in Fig. 1.2. The confluence of each of these gives rise to a different problem

paradigm and underscores a particular research focus. For instance, developing algo-

rithms for a particular application (Algorithms + Applications), theoretical guarantees

for algorithm agnostic techniques (Applications + Theoretical Guarantees), and finally,

provable algorithms (Theoretical Guarantees + Algorithms).

1.2.1 Early Motivations: Semi-blind source separation

The motivation to analyze the properties of learning problems stemmed from my Mas-

ter’s thesis work on a single channel semi-blind source separation task encountered

in analysis of the audio signals generated by electro-shock law enforcement devices;

see Rambhatla and Haupt (2013a); Rambhatla (2012). The task here was to identify

whether the device is delivering current to a subject or not, from a single audio record-

ing captured by a on-board microphone. The state of the device (delivering current

5

or not) is critical in acertaining liability in an incident where the device used. The

existing techniques relied on an expert to listen for subtle changes in the charateris-

tic quasi-periodic audio signal (generated by the device’s RLC circuit) caused by the

change in resistance when the probes are properly attached.

Since these characteristic responses could be simulated in a controlled environ-

ment, when deployed in real-world, the microphone also records other background

activity involving the altercation, which makes identifying the state of the device chal-

lenging. Nevertheless, motivated from the dictionary learning setting and using our

knowledge about the characteristic responses under different resistive loads, we posed

this problem as a semi-blind dictionary learning problem. To this end, we set the known

part of the dictionary D as these characteristic responses (semi-blind), and modeled

the given data matrix M ∈Rn×p as

M = AX + DS, (1.1)

where the the dictionary A captures the features in the unknown background activity.

Specifically, the aim here is to recover the unknown dictionary matrix A ∈Rn×m and the

sparse coefficients X ∈Rm×p and S ∈Rd×p, given an a priori known dictionary D ∈Rn×d

by solving the following optimization problem

min
Au,X

1
2

∥∥∥∥∥∥∥M− [A | D]

XS

∥∥∥∥∥∥∥

2

F

+λ

∥∥∥∥∥∥∥
XS


∥∥∥∥∥∥∥

1

.

As in the case of the dictionary learning, the optimization formulation shown above is

inherently non-convex since both A and X are unknown. To this end, we developed

an alternating minimization based approach – semi-blind morphological component

analysis (SBMCA) (Rambhatla and Haupt, 2013a; Rambhatla, 2012) – which alternates

between sparse coefficient recovery and dictionary update to recover the factors.

Notwithstanding the promising empirical results, the alternating minimization-

based approach offered no limited theoretical guarantees. As a result, developing and

establishing guarantees on the performance of algorithm–agnostic and –aware learning tech-

niques for their safe use in critical tasks served as the primary motivation and the focus of

this dissertation.

6

1.2.2 Dictionary-based generalization of Robust PCA

As another variation of the problem described above – motivated from a hyperspectral

demixing task – we first considered a closely related convex demixing task, where

a data matrix M is generated via a superposition of a low-rank component L, and a

dictionary sparse component DS, wherein the dictionary D is known a priori, i.e.,

M = L + DS.

The aim here is to recover the rank r low-rank component and the sparse coefficient

matrix S. To this end, we studied the conditions on rank and sparsity for which solving

the following convex optimization problem recovers the components exactly.

min
L,S

1
2‖L‖∗ +λ‖S‖1 subject to M = L + DS,

where the nuclear norm ‖.‖∗ stands-in as a convex relaxation of the rank constraint,

and the `1-norm for the `0-“norm”.

Originally, studied by Mardani et al. (2013) where the known dictionary D is over-

complete or fat, i.e. n ≤ d with rows of dictionary D being orthogonal, we extended

the results to a case where D can be both thin or fat, while removing the orthogonality

requirement; see Rambhatla et al. (2016a). As a result, the model became amenable for

localizing a target in a hyperspectral image based on its spectral signature Rambhatla

et al. (2017a). Further, we also study two sparsity structures, 1) where S contains a few

non-zeros globally, and 2) where only a few columns of S have non-zero elements, i.e.,

S is column sparse; see Li et al. (2018a); Rambhatla et al. (2018a,b).

This work and its application in target localization in hyperspectral imaging – dis-

cussed in Part II Chapter 4 and Chapter 5, respectively – also revealed a surprising re-

sult. Contrary to the belief that when the known dictionary D is thin one can pre-multiply

by the pseudo-inverse D† of D to transform the problem to that of Robust PCA (Candès

et al., 2011), our analysis shows that such a multiplication may make the updated low-rank

component D†L full-rank (or near full-rank), and hence may no longer follow the model

specifications. In other words, we found that for these problems, the concept of “low-rank” is

relative to the maximum allowable rank of the matrix and any pre-multiplication/processing

may destroy this structure. Our experimental evaluation corroborates this finding, for both

sparsity models and we present these in Chapter 4 Section 4.2.2 and 4.5.

7

1.2.3 Provable Algorithm for Dictionary learning

In an effort to develop theoretical guarantees for the semi-blind demixing task de-

scribed above, we began exclusively focusing on investigating the applicability of the

recent provable algorithms for dictionary learning (Agarwal et al., 2014; Arora et al.,

2014, 2015).

In dictionary learning, the aim is to express given data as a linear combination of a

few columns of a matrix (referred to as a dictionary), wherein the dictionary (A∗ ∈Rn×m)

and the weights characterizing the linear combination (referred to as sparse coefficients,

x∗(i) ∈ R
m) are a priori unknown, i.e., columns y(i) ∈ Rn of given data matrix Y ∈ Rn×p

are generated as

y(i) = A∗x∗(i) + w(i),

where w(i) is the i.i.d. Gaussian noise, and each sparse coefficient vector x∗(i) contains

at most k non-zeros.

In our analysis, we found that the provable techniques mentioned above provide

guarantees on the dictionary recovery only Rambhatla et al. (2019). The underlying

assumption being that the sparse coefficients can be recovered after dictionary recov-

ery by using a sparse recovery algorithm (e.g. Lasso (Tibshirani, 1996)). Contrary

to this belief, any non-negligible error in the dictionary precludes the use of existing

sparse recovery results for exact recovery (or even support recovery). As a result, these

existing techniques are not viable for recovery of both the dictionary and coefficients.

In the quest for guaranteed coefficient recovery, our analysis revealed the symbi-

otic relationship between the dictionary and coefficient recovery. Specifically, we show

that as opposed to the existing techniques, making progress on the coefficient recovery

also helps us to improve our dictionary estimate. With this, we develop an online dic-

tionary learning algorithm – Neurally plausible alternating Optimization-based On-

line Dictionary Learning (NOODL) – with exact recovery guarantees for both the dic-

tionary and the coefficients. In addition to being suitable for large-scale distributed

and neural implementations, the algorithm removes an inherent performance-limiting,

dimension-dependent bias incurred by the prior-art and has linear convergence guar-

antees; see Chapter 2 for details.

8

1.2.4 Provable Structured Tensor Factorization

Our exact recovery results for the dictionary and the coefficients under the dictionary

learning model are useful in a number of applications where recovery of coefficients is

critical. For instance, we use these for a 3-way tensor factorization task, where the aim

is recover the Canonical polyadic (CP) factors of a tensor Z, with the CP decomposition

of Z defined as

Z =
∑M
m=1 Am ◦Bm ◦Cm.

Here, A ∈ Rn×M , B ∈ RJ×M , and C ∈ RK×M are the constituent CP factors, where the

columns of factor A are unit norm and obey some incoherence assumptions, and the

factors B and C are sparse. As a result, the mode-1 unfolding of the tensor Z, given by

Z>1 = A (C�B)>︸ ︷︷ ︸
X

,

falls into the dictionary learning setting. Here, “� ” denotes the Khatri-Rao product

(column-wise Kronecker product of C and B).

Leveraging our provable dictionary learning results (Section 1.2.3) we develop a

structured tensor factorization algorithm – TensorNOODL – to recover the CP factors

of the tensor of interest. Here, the exact coefficient recovery result allows us to untan-

gle the CP factors C and B from X (upto sign and scaling ambiguity) from X. However,

our previous dictionary learning results (described in Section 1.2.3) are not directly

applicable, and we dedicate a significant portion of the analysis to reconcile the ad-

ditional dependence that arises due to the Khatri-Rao structure. The details of the

analysis are presented in Chapter 3.

1.2.5 Lidar-Based Topological Mapping and Localization

We also develop an algorithm – TensorMap – for building tensor decomposition-based

topological maps using Lidar data and to localize in them (Rambhatla et al., 2018c).

This rounds-up the third aspect of the learning problem ecosystem, shown in Fig. 1.2,

where we develop an algorithm for an application of interest.

9

In addition to the application in vehicle navigation, our technique provides an ef-

ficient way to store a series of Lidar scans (that constitute a map) and leverage the ten-

sor decomposition properties to localize effectively even in feature deficient or slow-

changing surroundings. The details of this effort are presented in Chapter 6.

1.3 Organization

We organize our discussion based on the three aspects of the learning problem ecosys-

tems identified in Fig. 1.2, namely – I. Algorithm-Aware, II. Algorithm-Agnostic, and

III. Application-Focused approaches. We first detail our algorithm-aware techniques

for provable matrix and tensor factorization (introduced in Section 1.2.3 and 1.2.4)

in Chapter 2 and Chapter 3 of Part I. Next in Part II of this dissertation, we describe

the algorithm-agnostic techniques for a matrix demixing task (Chapter 4)– introduced

in Section 1.2.2 – with its application to a target localization task (Chapter 5). Fur-

ther in Part III (Chapter 6), we present an application-focused technique for building

and localizing in Lidar-based topological maps corresponding to our discussion in Sec-

tion 1.2.5. Finally, we give an overview of the software packages developed as part of

this dissertation in Part IV, and conclude this discussion by synthesizing the main

takeaways in Chapter 8. We present detailed proofs of our theoretical results in the

appendices after each of the individual chapters.

1.4 Notation

We now introduce some common notation used in our discussion. Additional spe-

cialized notations are defined where used, and symbols are also summarized in Ta-

ble 4.A.1, 2.A.1, 3.A.1, and 3.A.2 the Appendices.

Given an integer n, we let [n] = {1,2, . . . ,n}. The bold upper-case underlined, bold

upper-case, and lower-case letters are used to denote tensors M, matrices M and vectors

v, respectively. We denote the i-th column, i-th row, (i, j) element of a matrix, and i-th

element of a vector by Mi , M(i,:), Mij , and vi (and v(i)), respectively. The superscript

(·)(n) denotes the n-th iterate, while the subscript (·)(n) is reserved for the n-th data

sample.

For a matrix M, we use ‖M‖ := σmax(M) and ‖M‖F for the spectral norm and Frobe-

nius norm, respectively, where σmax(M) denotes the maximum singular value of the

10

matrix. Further, we use ‖M‖∞ := max
i, j
|Mij |, ‖M‖∞,∞ := max

i
‖e>i M‖1, and ‖M‖∞,2 :=

max
i
‖Mei‖, where Mi,j denotes the (i, j) element of M and ei denotes the canonical

basis vector with 1 at the i-th location and 0 elsewhere. In addition, ‖.‖∗, ‖.‖1, and ‖.‖1,2
refer to the nuclear norm, entry-wise `1- norm, and `1,2 norm (sum of the `2 norms

of the columns) of a matrix, respectively, which serve as convex relaxations of rank,

sparsity, and column-wise sparsity, respectively.

Next, given a vector v, we use ‖v‖, ‖v‖0, and ‖v‖1 to denote the `2 norm, `0 (number

of non-zero entries), and `1 norm, respectively. We also use standard Landau notations

O(·),Ω(·) (Õ(·),Ω̃(·)) to indicate the asymptotic behavior (ignoring logarithmic factors).

Further, we use g(n) = O∗(f (n)) to indicate that g(n) ≤ Lf (n) for a small enough constant

L, which is independent of n. We use c(·) for constants parameterized by the quantities

in (·).
We denote the hard-thresholding operator by Tτ (z) := z · 1|z|≥τ , where “1” is the

indicator function and τ is the threshold. We use supp(·) for the support (the set of

non-zero elements) and sign(·) for the element-wise signum function. Finally, we use

D(v) as a diagonal matrix with elements of a vector v on the diagonal. Given a matrix

M, we use M−i to denote a resulting matrix without i-th column.

Part I

Algorithm-Aware Matrix and Tensor

Factorization

11

Chapter 2

Provable Online Dictionary

Learning and Sparse Coding

2.1 Overview

We consider the dictionary learning problem, where the aim is to model the given data

as a linear combination of a few columns of a matrix known as a dictionary, where

the sparse weights forming the linear combination are known as coefficients. Since the

dictionary and coefficients, parameterizing the linear model are unknown, the cor-

responding optimization is inherently non-convex. This was a major challenge until

recently, when provable algorithms for dictionary learning were proposed. Yet, these

provide guarantees only on the recovery of the dictionary, without explicit recovery

guarantees on the coefficients. Moreover, any estimation error in the dictionary ad-

versely impacts the ability to successfully localize and estimate the coefficients. This

potentially limits the utility of existing provable dictionary learning methods in ap-

plications where coefficient recovery is of interest. To this end, we develop NOODL: a

simple Neurally plausible alternating Optimization-based Online Dictionary Learn-

ing algorithm, which recovers both the dictionary and coefficients exactly at a geo-

metric rate, when initialized appropriately. Our algorithm, NOODL, is also scalable

and amenable for large scale distributed implementations in neural architectures, by

which we mean that it only involves simple linear and non-linear operations. Finally,

we corroborate these theoretical results via experimental evaluation of the proposed

algorithm with the current state-of-the-art techniques.

12

13

2.2 Introduction

Sparse models avoid overfitting by favoring simple yet highly expressive representa-

tions. Since signals of interest may not be inherently sparse, expressing them as a

sparse linear combination of a few columns of a dictionary is used to exploit the spar-

sity properties. Of specific interest are overcomplete dictionaries, since they provide

a flexible way of capturing the richness of a dataset, while yielding sparse representa-

tions that are robust to noise; see Mallat and Zhang (1993); Chen et al. (1998); Donoho

et al. (2006). In practice however, these dictionaries may not be known, warranting a

need to learn such representations – known as dictionary learning (DL) or sparse coding

(Olshausen and Field, 1997). Formally, this entails learning an a priori unknown dictio-

nary A ∈ Rn×m and sparse coefficients x∗(j) ∈ R
m from data samples y(j) ∈ Rn generated

as

y(j) = A∗x∗(j), ‖x
∗
(j)‖0 ≤ k for all j = 1,2, . . . (2.1)

This particular model can also be viewed as an extension of the low-rank model (Pear-

son, 1901). Here, instead of sharing a low-dimensional structure, each data vector can

now reside in a separate low-dimensional subspace. Therefore, together the data ma-

trix admits a union-of-subspace model. As a result of this additional flexibility, DL finds

applications in a wide range of signal processing and machine learning tasks, such as

denoising (Elad and Aharon, 2006), image inpainting (Mairal et al., 2009), clustering

and classification (Ramirez et al., 2010; Rambhatla and Haupt, 2013a; Rambhatla et al.,

2016a, 2017a, 2018b,a), and analysis of deep learning primitives (Ranzato et al., 2008;

Gregor and LeCun, 2010); see also Elad (2010), and references therein.

Notwithstanding the non-convexity of the associated optimization problems (since

both factors are unknown), alternating minimization-based dictionary learning tech-

niques have enjoyed significant success in practice. Popular heuristics include regu-

larized least squares-based (Olshausen and Field, 1997; Lee et al., 2007; Mairal et al.,

2009; Lewicki and Sejnowski, 2000; Kreutz-Delgado et al., 2003), and greedy approaches

such as the method of optimal directions (MOD) (Engan et al., 1999) and k-SVD (Aharon

et al., 2006). However, dictionary learning, and matrix factorization models in general,

are difficult to analyze in theory; see also Li et al. (2016b).

To this end, motivated from a string of recent theoretical works (Gribonval and

14

Schnass, 2010; Jenatton et al., 2012; Geng and Wright, 2014), provable algorithms for

DL have been proposed recently to explain the success of aforementioned alternating

minimization-based algorithms (Agarwal et al., 2014; Arora et al., 2014, 2015). How-

ever, these works exclusively focus on guarantees for dictionary recovery. On the other

hand, for applications of DL in tasks such as classification and clustering – which rely

on coefficient recovery – it is crucial to have guarantees on coefficients recovery as well.

Contrary to conventional prescription, a sparse approximation step after recovery

of the dictionary does not help; since any error in the dictionary – which leads to an

error-in-variables (EIV) (Fuller, 2009) model for the dictionary – degrades our ability

to even recover the support of the coefficients (Wainwright, 2009). Further, when this

error is non-negligible, the existing results guarantee recovery of the sparse coefficients

only in `2-norm sense (Donoho et al., 2006). As a result, there is a need for scalable

dictionary learning techniques with guaranteed recovery of both factors.

2.2.1 Summary of Our Contributions

In this work, we present a simple online DL algorithm motivated from the following

regularized least squares-based problem, where S(·) is a nonlinear function that pro-

motes sparsity.

min
A,{x(j)}pj=1

p∑
j=1
‖y(j) −Ax(j)‖22 +

p∑
j=1
S(x(j)). (P1)

Although our algorithm does not optimize this objective, it leverages the fact that

the problem (P1) is convex w.r.t A, given the sparse coefficients {x(j)}. Following this,

we recover the dictionary by choosing an appropriate gradient descent-based strategy

(Arora et al., 2015; Engan et al., 1999). To recover the coefficients, we develop an itera-

tive hard thresholding (IHT)-based update step (Haupt and Nowak, 2006; Blumensath

and Davies, 2009), and show that – given an appropriate initial estimate of the dic-

tionary and a mini-batch of p data samples at each iteration t of the online algorithm

– alternating between this IHT-based update for coefficients, and a gradient descent-

based step for the dictionary leads to geometric convergence to the true factors, i.e.,

x(j)→x∗(j) and A(t)
i →A∗i as t→∞.

In addition to achieving exact recovery of both factors, our algorithm – Neurally

plausible alternating Optimization-based Online Dictionary Learning (NOODL) – has

15

linear convergence properties. Furthermore, it is scalable, and involves simple opera-

tions, making it an attractive choice for practical DL applications. Our major contri-

butions are summarized as follows:

• Provable coefficient recovery: To the best of our knowledge, this is the first result

on exact recovery of the sparse coefficients {x∗(j)}, including their support recovery,

for the DL problem. The proposed IHT-based strategy to update coefficient under

the EIV model, is of independent interest for recovery of the sparse coefficients via

IHT, which is challenging even when the dictionary is known; see also Yuan et al.

(2016) and Li et al. (2016c).

• Unbiased estimation of factors and linear convergence: The recovery guarantees

on the coefficients also helps us to get rid of the bias incurred by the prior-art in

dictionary estimation. Furthermore, our technique geometrically converges to the

true factors.

• Online nature and neural implementation: The online nature of algorithm, makes

it suitable for machine learning applications with streaming data. In addition, the

separability of the coefficient update allows for distributed implementations in neu-

ral architectures (only involves simple linear and non-linear operations) to solve

large-scale problems. To showcase this, we also present a prototype neural imple-

mentation of NOODL.

In addition, we also verify these theoretical properties of NOODL through experimen-

tal evaluations on synthetic data, and compare its performance with state-of-the-art

provable DL techniques.

2.2.2 Related Works

With the success of the alternating minimization-based techniques in practice, a push

to study the DL problem began when Gribonval and Schnass (2010) showed that for

m = n, the solution pair (A∗,X∗) lies at a local minima of the following non-convex op-

timization program, where X = [x(1),x(2), . . . ,x(p)] and Y = [y(1),y(2), . . . ,y(p)], with high

probability over the randomness of the coefficients,

min
A,X
‖X‖1 s.t. Y = AX, ‖Ai‖ = 1,∀ i ∈ [m]. (2.2)

16
Table 2.1: Comparison of provable algorithms for dictionary learning.

Method
Conditions Recovery Guarantees

Initial Gap of Maximum Sample
Dictionary Coefficients

Dictionary Sparsity Complexity

NOODL (this work)
O∗

(
1

log(n)

)
O∗

(√
n

µ log(n)

) Ω̃
(
mk2

)
No bias No bias

Arora15(‘‘biased’’)† Ω̃ (mk) O(
√
k/n) N/A

Arora15(‘‘unbiased’’)† poly(m) Negligible bias § N/A

Barak et al. (2015)¶ N/A O(m(1−δ)) for δ > 0 nO(d)/poly(k/m) ε N/A

Agarwal et al. (2014)‡ O∗ (1/poly(m)) O
(

6
√
n/µ

)
Ω(m2) No bias N/A

Spielman et al. (2012) (for n ≤m) N/A O(
√
n) Ω̃(n2) No bias N/A

Dictionary recovery reported in terms of column-wise error. † See Section 2.6 for description. ‡ This procedure is not
online. § The bias is not explicitly quantified. The authors claim it will be negligible. ¶ Here, d = Ω(1

ε log(m/n)) for
column-wise error of ε.

Following this, Geng and Wright (2014) and Jenatton et al. (2012) extended these re-

sults to the overcomplete case (n < m), and the noisy case, respectively. Concurrently,

Jung et al. (2014, 2016) studied the nature of the DL problem for S(·) = ‖ · ‖1 (in (P1)),

and derived a lower-bound on the minimax risk of the DL problem. However, these

works do not provide any algorithms for DL.

Motivated from these theoretical advances, Spielman et al. (2012) proposed an al-

gorithm for the under-complete case n ≥ m that works up-to a sparsity of k = O(
√
n).

Later, Agarwal et al. (2014) and Arora et al. (2014) proposed clustering-based provable

algorithms for the overcomplete setting, motivated from MOD (Engan et al., 1999) and

k-SVD (Aharon et al., 2006), respectively. Here, in addition to requiring stringent con-

ditions on dictionary initialization, Agarwal et al. (2014) alternates between solving a

quadratic program for coefficients and an MOD-like (Engan et al., 1999) update for

the dictionary, which is too expensive in practice. Recently, a DL algorithm that works

for almost linear sparsity was proposed by Barak et al. (2015); however, as shown in

Table 2.1, this algorithm may result in exponential running time. Finally, Arora et al.

(2015) proposed a provable online DL algorithm, which provided improvements on

initialization, sparsity, and sample complexity, and is closely related to our work. A

follow-up work by Chatterji and Bartlett (2017) extends this to random initializations

while recovering the dictionary exactly, however the effect described therein kicks-in

only in very high dimensions. We summarize the relevant provable DL techniques in

Table 2.1.

The algorithms discussed above implicitly assume that the coefficients can be re-

covered, after dictionary recovery, via some sparse approximation technique. How-

ever, as alluded to earlier, the guarantees for coefficient recovery – when the dictionary

17

is known approximately – may be limited to some `2 norm bounds (Donoho et al.,

2006). This means that, the resulting coefficient estimates may not even be sparse.

Therefore, for practical applications, there is a need for efficient online algorithms

with guarantees, which serves as the primary motivation for our work.

2.3 Algorithm

We now detail the specifics of our algorithm – NOODL, outlined in Algorithm 1.

NOODL recovers both the dictionary and the coefficients exactly given an appropriate

initial estimate A(0) of the dictionary. Specifically, it requires A(0) to be (ε0,2)-close to

A∗ for ε0 = O∗(1/ log(n)), where (ε,κ)-closeness is defined as follows. This implies that,

the initial dictionary estimate needs to be column-wise, and in spectral norm sense,

close to A∗, which can be achieved via certain initialization algorithms, such as those

presented in Arora et al. (2015).

Definition 2.1 ((ε,κ)-closeness). A dictionary A is (ε,κ)-close to A∗ if ‖A−A∗‖ ≤ κ‖A∗‖,
and if there is a permutation π : [m]→ [m] and a collection of signs σ : [m]→ {±1} such

that ‖σ (i)Aπ(i) −A∗i‖ ≤ ε, ∀ i ∈ [m].

Due to the streaming nature of the incoming data, NOODL takes a mini-batch of

p data samples at the t-th iteration of the algorithm, as shown in Algorithm 1. It then

proceeds by alternating between two update stages: coefficient estimation (“Predict”)

and dictionary update (“Learn”) as follows.

Predict Stage: For a general data sample y = A∗x∗, the algorithm begins by forming

an initial coefficient estimate x(0) based on a hard thresholding (HT) step as shown in

(2.3), where Tτ (z) := z ·1|z|≥τ for a vector z. Given this initial estimate x(0), the algorithm

iterates over R = Ω(log(1/δR)) IHT-based steps (2.4) to achieve a target tolerance of δR,

such that (1−ηx)R ≤ δR. Here, η(r)
x is the learning rate, and τ (r) is the threshold at the r-

th iterate of the IHT. In practice, these can be fixed to some constants for all iterations;

see A.6 for details. Finally at the end of this stage, we have estimate x̂(t) := x(R) of x∗.

Learn Stage: Using this estimate of the coefficients, we update the dictionary at t-

th iteration A(t) by an approximate gradient descent step (2.6), using the empirical

gradient estimate (2.5) and the learning rate ηA = Θ(m/k); see also A.5. Finally, we

normalize the columns of the dictionary and continue to the next batch. The running

time of each step t of NOODL is therefore O(mnp log(1/δR)). For a target tolerance

18

Algorithm 1: NOODL: Neurally plausible alternating Optimization-based Online Dic-
tionary Learning.

Input: Fresh data samples y(j) ∈Rn for j ∈ [p] at each iteration t generated as per

(2.1), where |x∗i | ≥ C for i ∈ supp(x∗). Parameters ηA, η(r)
x and τ (r) chosen as

per A.5 and A.6. No. of iterations T = Ω(log(1/εT)) and R = Ω(log(1/δR)),
for target tolerances εT and δR.

Output: The dictionary A(t) and coefficient estimates x̂(t)
(j) for j ∈ [p] at each

iterate t.
Initialize: Estimate A(0), which is (ε0,2)-near to A∗ for ε0 = O∗(1/ log(n))
for t = 0 to T − 1 do

Predict: (Estimate Coefficients)
for j = 1 to p do

Initialize: x(0)
(j) = TC/2(A(t)>y(j)) (2.3)

for r = 0 to R− 1 do

Update: x(r+1)
(j) = Tτ (r)(x(r)

(j) − η
(r)
x A(t)>(A(t)x(r)

(j) − y(j))) (2.4)

end
end

x̂(t)
(j) := x(R)

(j) for j ∈ [p]
Learn: (Update Dictionary)

Form empirical gradient estimate: ĝ(t) = 1
p

∑p
j=1(A(t)̂x(t)

(j) − y(j))sign(̂x(t)
(j))
>

(2.5)

Take a gradient descent step: A(t+1) = A(t) − ηA ĝ(t) (2.6)

Normalize: A(t+1)
i = A(t+1)

i /‖A(t+1)
i ‖ ∀ i ∈ [m]

end

of εT and δT , such that ‖A(T)
i −A∗i‖ ≤ εT ,∀i ∈ [m] and |̂x(T)

i − x∗i | ≤ δT we choose T =

max(Ω(log(1/εT)),Ω(log(
√
k/δT))).

NOODL uses an initial HT step and an approximate gradient descent-based strat-

egy as in Arora et al. (2015). Following which, our IHT-based coefficient update step

yields an estimate of the coefficients at each iteration of the online algorithm. Coupled

with the guaranteed progress made on the dictionary, this also removes the bias in dic-

tionary estimation. Further, the simultaneous recovery of both factors also avoids an

often expensive post-processing step for recovery of the coefficients.

19

2.4 Main Result

We start by introducing a few important definitions. First, as discussed in the previous

section we require that the initial estimate A(0) of the dictionary is (ε0,2)-close to A∗.

In fact, we require this closeness property to hold at each subsequent iteration t, which

is a key ingredient in our analysis. This initialization achieves two goals. First, the

‖σ (i)Aπ(i) −A∗i‖ ≤ ε0 condition ensures that the signed-support of the coefficients are

recovered correctly (with high probability) by the hard thresholding-based coefficient

initialization step, where signed-support is defined as follows.

Definition 2.2. The signed-support of a vector x is defined as sign(x) · supp(x).

Next, the ‖A − A∗‖ ≤ 2‖A∗‖ condition keeps the dictionary estimates close to A∗

and is used in our analysis to ensure that the gradient direction (2.5) makes progress.

Further, in our analysis, we ensure εt (defined as ‖A(t)
i −A∗i‖ ≤ εt) contracts at every

iteration, and assume ε0,εt = O∗(1/ log(n)). Also, we assume that the dictionary A is

fixed (deterministic) and µ-incoherent, defined as follows.

Definition 2.3. A matrix A ∈Rn×m with unit-norm columns is µ-incoherent if for all i , j

the inner-product between the columns of the matrix follow |〈Ai ,Aj〉| ≤ µ/
√
n.

The incoherence parameter measures the degree of closeness of the dictionary el-

ements. Smaller values (i.e., close to 0) of µ are preferred, since they indicate that

the dictionary elements do not resemble each other. This helps us to effectively tell

dictionary elements apart (Donoho and Huo, 2001a; Candes and Romberg, 2007). We

assume that µ = O(log(n)) (Donoho and Huo, 2001a). Next, we assume that the coeffi-

cients are drawn from a distribution class D defined as follows.

Definition 2.4 (Distribution class D). The coefficient vector x∗ belongs to an unknown

distribution D, where the support S = supp(x∗) is at most of size k, Pr[i ∈ S] = Θ(k/m) and

Pr[i, j ∈ S] = Θ(k2/m2). Moreover, the distribution is normalized such that E[x∗i |i ∈ S] = 0

and E[x∗
2

i |i ∈ S] = 1, and when i ∈ S, |x∗i | ≥ C for some constant C ≤ 1. In addition, the

non-zero entries are sub-Gaussian and pairwise independent conditioned on the support.

The randomness of the coefficient is necessary for our finite sample analysis of the

convergence. Here, there are two sources of randomness. The first is the randomness

of the support, where the non-zero elements are assumed to pair-wise independent.

The second is the value an element in the support takes, which is assumed to be zero

20

mean with variance one, and bounded in magnitude. Similar conditions are also re-

quired for support recovery of sparse coefficients, even when the dictionary is known

(Wainwright, 2009; Yuan et al., 2016). Note that, although we only consider the case

|x∗i | ≥ C for ease of discussion, analogous results may hold more generally for x∗is drawn

from a distribution with sufficiently (exponentially) small probability of taking values

in [−C,C].

Recall that, given the coefficients, we recover the dictionary by making progress

on the least squares objective (P1) (ignoring the term penalizing S(·)). Note that, our

algorithm is based on finding an appropriate direction to ensure descent based on the

geometry of the objective. To this end, we adopt a gradient descent-based strategy for

dictionary update. However, since the coefficients are not exactly known, this results

in an approximate gradient descent-based approach, where the empirical gradient es-

timate is formed as (2.5). In our analysis, we establish the conditions under which

both the empirical gradient vector (corresponding to each dictionary element) and the

gradient matrix concentrate around their means. To ensure progress at each iterate t,

we show that the expected gradient vector is (Ω(k/m),Ω(m/k),0)-correlated with the

descent direction, defined as follows.

Definition 2.5. A vector g(t) is (ρ−,ρ+
,ζt)-correlated with a vector z∗ if

〈g(t),z(t) − z∗〉 ≥ ρ−‖z(t) − z∗‖2 + ρ+‖g(t)‖2 − ζt .

This can be viewed as a local descent condition which leads to the true dictionary

columns; see also Candès et al. (2015), Chen and Wainwright (2015b) and Arora et al.

(2015). In convex optimization literature, this condition is implied by the 2ρ−-strong

convexity, and 1/2ρ
+
-smoothness of the objective. We show that for NOODL, ζt = 0,

which facilitates linear convergence to A∗ without incurring any bias. Overall our

specific model assumptions for the analysis can be formalized as:

A.1 A∗ is µ-incoherent (Def. 2.3), where µ = O(log(n)), ‖A∗‖ = O(
√
m/n) and m = O(n);

A.2 The coefficients are drawn from the distribution class D, as per Def. 2.4;

A.3 The sparsity k satisfies k = O∗(
√
n/µ log(n));

A.4 A(0) is (ε0,2)-close to A∗ as per Def. 2.1, and ε0 = O∗(1/ log(n));

A.5 The step-size for dictionary update satisfies ηA = Θ(m/k);

21

A.6 The step-size and threshold for coefficient estimation satisfies η(r)
x < c1(εt ,µ,n,k) =

Ω̃(k/
√
n) < 1 and τ (r) = c2(εt ,µ,k,n) = Ω̃(k2/n) for small constants c1 and c2.

We are now ready to state our main result. A summary of the notation followed by

a details of the analysis is provided in Appendix 2.A and Appendix 2.B, respectively.

Theorem 2.1 (Main Result). Suppose that assumptions A.1-A.6 hold, and Algorithm 1 is

provided with p = Ω̃(mk2) new samples generated according to model (2.1) at each iteration

t. Then, with probability at least (1−δ(t)
alg) for some small constant δ(t)

alg, given R = Ω(log(n)),

the coefficient estimate x̂(t)
i at t-th iteration has the correct signed-support and satisfies

(̂x(t)
i − x∗i)

2 = O(k(1−ω)t/2‖A(0)
i −A∗i‖), for all i ∈ supp(x∗).

Furthermore, for some 0 < ω < 1/2, the estimate A(t) at (t)-th iteration satisfies

‖A(t)
i −A∗i‖

2 ≤ (1−ω)t‖A(0)
i −A∗i‖

2, for all t = 1,2,

Our main result establishes that when the model satisfies A.1∼A.3, the errors cor-

responding to the dictionary and coefficients geometrically decrease to the true model

parameters, given appropriate dictionary initialization and learning parameters (step

sizes and threshold); see A.4∼A.6. In other words, to attain a target tolerance of εT and

δT , where ‖A(T)
i −A∗i‖ ≤ εT , |̂x(T)

i −x∗i | ≤ δT , we require T = max(Ω(log(1/εT)),Ω(log(
√
k/δT)))

outer iterations and R = Ω(log(1/δR)) IHT steps per outer iteration. Here, δR ≥ (1−ηx)R

is the target decay tolerance for the IHT steps. An appropriate number of IHT steps, R,

remove the dependence of final coefficient error (per outer iteration) on the initial x(0).

In Arora et al. (2015), this dependence in fact results in an irreducible error, which is

the source of bias in dictionary estimation. As a result, since (for NOODL) the error in

the coefficients only depends on the error in the dictionary, it can be made arbitrarily

small, at a geometric rate, by the choice of εT , δT , and δR. Also, note that, NOODL can

tolerate i.i.d. noise, as long as the noise variance is controlled to enable the concentra-

tion results to hold; we consider the noiseless case here for ease of discussion, which is

already highly involved.

Intuitively, Theorem 2.1 highlights the symbiotic relationship between the two fac-

tors. It shows that, to make progress on one, it is imperative to make progress on

the other. The primary condition that allows us to make progress on both factors is

the signed-support recovery (Def. 2.2). However, the introduction of IHT step adds

22

complexity in the analysis of both the dictionary and coefficients. To analyze the co-

efficients, in addition to deriving conditions on the parameters to preserve the cor-

rect signed-support, we analyze the recursive IHT update step, and decompose the

noise term into a component that depends on the error in the dictionary, and the other

that depends on the initial coefficient estimate. For the dictionary update, we an-

alyze the interactions between elements of the coefficient vector (introduces by the

IHT-based update step) and show that the gradient vector for the dictionary update is

(Ω(k/m),Ω(m/k),0)-correlated with the descent direction. In the end, this leads to ex-

act recovery of the coefficients and removal of bias in the dictionary estimation. Note

that our analysis pipeline is standard for the convergence analysis for iterative algo-

rithms. However, the introduction of the IHT-based strategy for coefficient update

makes the analysis highly involved as compared to existing results, e.g., the simple

HT-based coefficient estimate in Arora et al. (2015).

NOODL has an overall running time ofO(mnp log(1/δR)max(log(1/εT), log(
√
k/δT))

to achieve target tolerances εT and δT , with a total sample complexity of p·T = Ω̃(mk2).

Thus to remove bias, the IHT-based coefficient update introduces a factor of log(1/δR)

in the computational complexity as compared to Arora et al. (2015) (has a total sample

complexity of p ·T = Ω̃(mk)), and also does not have the exponential running time and

sample complexity as Barak et al. (2015); see Table 2.1.

2.5 Neural implementation of NOODL

The neural plausibility of our algorithm implies that it can be implemented as a neu-

ral network. This is because, NOODL employs simple linear and non-linear operations

(such as inner-product and hard-thresholding) and the coefficient updates are separa-

ble across data samples, as shown in (2.4) of Algorithm 1. To this end, we present a

neural implementation of our algorithm in Fig. 2.1, which showcases the applicability

of NOODL in large-scale distributed learning tasks, motivated from the implementa-

tions described in (Olshausen and Field, 1997) and (Arora et al., 2015).

The neural architecture shown in Fig. 2.1(a) has three layers – input layer, weighted

residual evaluation layer, and the output layer. The input to the network is a data and

step-size pair (y(j),ηx) to each input node. Given an input, the second layer evaluates

the weighted residuals as shown in Fig. 2.1. Finally, the output layer neurons evaluate

the IHT iterates x(r+1)
(j) (2.4). We illustrate the operation of this architecture using the

23

(a) Neural implementation of NOODL

Figure 2.1: A neural implementation of
NOODL. Panel (a) shows the neural ar-
chitecture, which consists of three lay-
ers: an input layer, a weighted resid-
ual evaluation layer (evaluates ηx

(
y(j) −

A(t)x(r)
(j)

)
), and an output layer. Panel (b)

shows the operation of the neural archi-

tecture in panel (a). The update of x(r+1)
(j)

is given by (2.4).

` = 0 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5 . . . ` = 2R+ 1 Hebbian
Learning:
Residual
sharing and
dictionary
update.

Output: x← 0 0 x(0)
(j) = Tτ (A(t)>y(j)) x(0)

(j) x(1)
(j) x(1)

(j) . . . x(R)
(j)

Residual: 0 y(j) y(j) ηx(y(j) −A(t)x(0)
(j)) ηx(y(j) −A(t)x(0)

(j)) ηx(y(j) −A(t)x(1)
(j)) . . . ηx(y(j) −A(t)x(R−1)

(j))
Input: (y(j),1) . (y(j),ηx) (y(j),1)

(b) The timing sequence of the neural implementation.

timing diagram in Fig. 2.1(b). The main stages of operation are as follows.

Initial Hard Thresholding Phase: The coefficients initialized to zero, and an input

(y(j),1) is provided to the input layer at a time instant ` = 0, which communicates

these to the second layer. Therefore, the residual at the output of the weighted residual

evaluation layer evaluates to y(j) at ` = 1. Next, at ` = 2, this residual is communicated

to the output layer, which results in evaluation of the initialization x(0)
(j) as per (2.3).

This iterate is communicated to the second layer for the next residual evaluation. Also,

at this time, the input layer is injected with (y(j),ηx) to set the step size parameter ηx
for the IHT phase, as shown in Fig. 2.1(b).

Iterative Hard Thresholding (IHT) Phase: Beginning ` = 3, the timing sequence en-

ters the IHT phase. Here, the output layer neurons communicate the iterates x(r+1)
(j) to

the second layer for evaluation of subsequent iterates as shown in Fig. 2.1(b). The pro-

cess then continues till the time instance ` = 2R + 1, for R = Ω(log(1/δR)) to generate

the final coefficient estimate x̂(t)
(j) := x(R)

(j) for the current batch of data. At this time, the

input layer is again injected with (y(j),1) to prepare the network for residual sharing

and gradient evaluation for dictionary update.

Dictionary Update Phase: The procedure now enters the dictionary update phase,

denoted as “Hebbian Learning” in the timing sequence. In this phase, each output

layer neuron communicates the final coefficient estimate x̂(t)
(j) = x(R)

(j) to the second layer,

which evaluates the residual for one last time (with ηx = 1), and shares it across all

second layer neurons (“Hebbian learning”). This allows each second layer neuron to

evaluate the empirical gradient estimate (2.5), which is used to update the current

24

dictionary estimate (stored as weights) via an approximate gradient descent step. This

completes one outer iteration of Algorithm 1, and the process continues for T iterations

to achieve target tolerances εT and δT , with each step receiving a new mini-batch of

data.

2.6 Experiments

We now analyze the convergence properties and sample complexity of NOODL via ex-

perimental evaluations 1. The experimental data generation set-up, additional results,

including analysis of computational time, are shown in Appendix 2.E.

2.6.1 Convergence Analysis

We compare the performance of our algorithm NOODL with the current state-of-the-

art alternating optimization-based online algorithms presented in Arora et al. (2015),

and the popular algorithm presented in Mairal et al. (2009) (denoted as Mairal ‘09).

First of these, Arora15(‘‘biased’’), is a simple neurally plausible method which in-

curs a bias and has a sample complexity of Ω(mk). The other, referred to as Arora15(‘‘

unbiased’’), incurs no bias as per Arora et al. (2015), but the sample complexity re-

sults were not established.

Discussion: Fig. 2.2 panels (a-i), (b-i), (c-i), and (d-i) show the performance of the

aforementioned methods for k = 10, 20, 50, and 100, respectively. Here, for all experi-

ments we set ηx = 0.2 and τ = 0.1. We terminate NOODL when the error in dictionary

is less than 10−10. Also, for coefficient update, we terminate when change in the iter-

ates is below 10−12. For k = 10, 20 and k = 50, we note that Arora15(‘‘biased’’) and

Arora15(‘‘unbiased’’) incur significant bias, while NOODL converges to A∗ linearly.

NOODL also converges for significantly higher choices of sparsity k, i.e., for k = 100 as

shown in panel (d), beyond k = O(
√
n), indicating a potential for improving this bound.

Further, we observe that Mairal ‘09 exhibits significantly slow convergence as com-

pared to NOODL. Also, in panels (a-ii), (b-ii), (c-ii) and (d-ii) we show the correspond-

ing performance of NOODL in terms of the error in the overall fit (‖Y−AX‖F/‖Y‖F),

and the error in the coefficients and the dictionary, in terms of relative Frobenius error

metric discussed above. We observe that the error in dictionary and coefficients drops

linearly as indicated by our main result.
1The associated code is made available at https://github.com/srambhatla/NOODL; see Chapter 7 for

details.

https://github.com/srambhatla/NOODL

25

k = 10, ηA = 30 k = 20, ηA = 30 k = 50, ηA = 15 k = 100, ηA = 15 Phase Transition
D

ic
ti

on
ar

y
R

ec
ov

er
y

A
cr

os
s

Te
ch

n
iq

u
es

50 100 150
Iterations

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
F

ro
be

ni
us

 E
rr

or

20 40 60 80 100
Iterations

10-10

10-8

10-6

10-4

10-2

20 40 60 80
Iterations

10-10

10-8

10-6

10-4

10-2

10 20 30 40
Iterations

10-10

10-8

10-6

10-4

10-2

100

0 0.5 1 1.5 2
p=m

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 P
ro

ba
bi

lit
y

m = n
m = 2n
m = 4n

(a-i) (b-i) (c-i) (d-i) (e-i) Dictionary

Pe
rf

or
m

an
ce

of
N

O
O

D
L

50 100 150
Iterations

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
F

ro
be

ni
us

 E
rr

or

20 40 60 80 100
Iterations

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
Fr

ob
en

iu
s

Er
ro

r

20 40 60 80
Iterations

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
Fr

ob
en

iu
s

Er
ro

r

10 20 30 40
Iterations

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
Fr

ob
en

iu
s

Er
ro

r

0 0.5 1 1.5 2
p=m

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 P
ro

ba
bi

lit
y

m = n
m = 2n
m = 4n

(a-ii) (b-ii) (c-ii) (d-ii) (e-ii) Coefficients

Figure 2.2: Comparative analysis of convergence properties. Panels (a-i), (b-i), (c-i), and
(d-i) show the convergence of NOODL, Arora15(‘‘biased’’), Arora15(‘‘unbiased’’) and
Mairal ‘09, for different sparsity levels for n = 1000, m = 1500 and p = 5000. Since NOODL
also recovers the coefficients, we show the corresponding recovery of the dictionary, coeffi-
cients, and overall fit in panels (a-ii), (b-ii), (c-ii), and (d-ii), respectively. Further, panels (e-i)
and (e-ii) show the phase transition in samples p (per iteration) with the size of the dictionarym
averaged across 10 Monte Carlo simulations for the two factors. Here, n = 100, k = 3, ηx = 0.2,
τ = 0.1, ε0 = 2/ log(n), ηA is chosen as per A.5. A trial is considered successful if the relative
Frobenius error incurred by Â and X̂ is below 5× 10−7 after 50 iterations.

2.6.2 Phase transitions

Fig. 2.2 panels (e-i) and (e-ii), shows the phase transition in number of samples with

respect to the size of the dictionarym. We observe a sharp phase transition at p
m = 1 for

the dictionary, and at p
m = 0.75 for the coefficients. This phenomenon is similar to that

observed by Agarwal et al. (2014) (however, theoretically they required p = O(m2)).

Here, we confirm number of samples required by NOODL are linearly dependent on

the dictionary elements m.

2.7 Future Work

We consider the online DL setting in this work. We note that, empirically NOODL

works for the batch setting also. However, analysis for this case will require more

sophisticated concentration results, which can address the resulting dependence be-

tween iterations of the algorithm. In addition, our experiments indicate that NOODL

works beyond the sparsity ranges prescribed by our theoretical results. Arguably, the

bounds on sparsity can potentially be improved by moving away from the incoherence-

based analysis. We also note that in our experiments, NOODL converges even when

initialized outside the prescribed initialization region, albeit it achieves the linear rate

26

once it satisfies the closeness condition A.4. These potential directions may signifi-

cantly impact the analysis and development of provable algorithms for other factor-

ization problems as well. We leave these research directions, and a precise analysis

under the noisy setting, for future explorations.

2.8 Conclusions

We present NOODL, to the best of our knowledge, the first neurally plausible prov-

able online algorithm for exact recovery of both factors of the dictionary learning (DL)

model. NOODL alternates between: (a) an iterative hard thresholding (IHT)-based

step for coefficient recovery, and (b) a gradient descent-based update for the dictio-

nary, resulting in a simple and scalable algorithm, suitable for large-scale distributed

implementations. We show that once initialized appropriately, the sequence of esti-

mates produced by NOODL converge linearly to the true dictionary and coefficients

without incurring any bias in the estimation. Complementary to our theoretical and

numerical results, we also design an implementation of NOODL in a neural architec-

ture for use in practical applications. In essence, the analysis of this inherently non-

convex problem impacts other matrix and tensor factorization tasks arising in signal

processing, collaborative filtering, and machine learning.

Appendices: Provable Online

Dictionary Learning and Sparse

Coding

2.A Summary of Notation

We summarizes the definitions of some frequently used symbols in our analysis in

Table 2.A.1. Also note that, since we show that ‖A(t)
i −A∗i‖ ≤ εt contracts in every step,

therefore we fix εt ,ε0 = O∗(1/ log(n)) in our analysis.

2.B Proof of Theorem 2.1

We now prove our main result. The detailed proofs of intermediate lemmas and claims

are organized in Appendix 2.C and Appendix 2.D, respectively. Furthermore, the stan-

dard concentration results are stated in Appendix 2.F for completeness. Also, see Ta-

ble 2.B.1 for a map of dependence between the results.

Overview

Given an (ε0,2)-close estimate of the dictionary, the main property that allows us to

make progress on the dictionary is the recovery of the correct sign and support of the

coefficients. Therefore, we first show that the initial coefficient estimate (2.3) recovers

the correct signed-support in Step I.A. Now, the IHT-based coefficient update step also

needs to preserve the correct signed-support. This is to ensure that the approximate

gradient descent-based update for the dictionary makes progress. Therefore, in Step

I.B, we derive the conditions under which the signed-support recovery condition is

27

28
Table 2.A.1: Frequently used symbols

Dictionary Related
Symbol Definition

A(t)
i i-th column of the dictionary estimate at the t-th iterate.

εt ‖A(t)
i −A∗i‖ ≤ εt = O∗(1

log(n)) Upper-bound on column-wise error at the t-th
iterate.

µt
µt√
n

= µ√
n

+ 2εt Incoherence between the columns of A(t); See
Claim 1.

λ
(t)
j λ

(t)
j := |〈A(t)

j −A∗j ,A
∗
j〉| ≤

ε2
t

2 Inner-product between the error and the dictio-
nary element.

Λ
(t)
S (i, j) Λ

(t)
S (i, j) =

λ(t)
j , for j = i, i ∈ S

0, otherwise.
A diagonal matrix of size |S |×|S |with λ(t)

j on the
diagonal for j ∈ S.

Coefficient Related
Symbol Definition

x(r)
i i-th element the coefficient estimate at the r-th IHT iterate.
C |x∗i | ≥ C for i ∈ supp(x∗) and C ≤ 1 Lower-bound on x∗is.
S S := supp(x∗) where |S | ≤ k Support of x∗

δR δR := (1− ηx + ηx
µt√
n

)R ≥ (1− ηx)R Decay parameter for coefficients.

δT |̂x(T)
i − x∗i | ≤ δT∀i ∈ supp(x∗) Target coefficient element error tolerance.

C
(`)
i C

(`)
i := |x∗i − x(`)

i | for i ∈ supp(x∗) Error in non-zero elements of the coefficient
vector.

Probabilities
Symbol Definition Symbol Definition
qi qi = Pr[i ∈ S] = Θ(km) qi,j qi,j = Pr[i, j ∈ S] = Θ(k

2

m2)

pi pi = E[x∗isign(x∗i)|x
∗
i , 0] δ

(t)
T δ

(t)
T = 2m exp(−C2/O∗(ε2

t))

δ
(t)
β δ

(t)
β = 2k exp(−1/O(εt)) δ

(t)
HW δ

(t)
HW = exp(−1/O(εt))

δ
(t)
gi δ

(t)
gi = exp(−Ω(k)) δ

(t)
g δ

(t)
g = (n+m)exp(−Ω(m

√
log(n))

Other terms
Symbol Definition

ξ
(r+1)
j ξ

(r+1)
j :=

∑
i,j

(〈A(t)
j −A∗j ,A

∗
i〉+ 〈A

∗
j ,A
∗
i〉)x

∗
i −

∑
i,j
〈A(t)

j ,A
(t)
i 〉x

(r)
i

β
(t)
j β

(t)
j :=

∑
i,j

(〈A∗j ,A
∗
i −A(t)

i 〉+ 〈A
∗
j −A(t)

j ,A
(t)
i 〉+ 〈A

(t)
j −A∗j ,A

∗
i〉)x

∗
i

tβ tβ = O(
√
kεt) is an upper-bound on β(t)

j with probability at least (1− δ(t)
β)

ξ̃
(r+1)
j ξ̃

(r+1)
j := β(t)

j +
∑
i,j
|〈A(t)

j ,A
(t)
i 〉| |x

∗
i − x(r)

i |

∆
(t)
j ∆

(t)
j := E[A(t)

S ϑ
(R)
S sign(x∗j)]

ϑ
(R)
i ϑ

(R)
i :=

R∑
r=1
ηxξ

(r)
i (1− ηx)R−r +γ (R)

i

γ
(R)
i γ

(R)
i := (1− ηx)R(x(0)

i − x∗i (1−λ
(t)
i))

γ γ := E[(A(t)̂x− y)sign(x∗j)1F x∗
]; See † below.

x̂i x̂i := x(R)
i = x∗i (1−λ

(t)
i) +ϑ(R)

i
†
1Fx∗ is the indicator function corresponding to the event that sign(x∗) = sign(̂x),
denoted by Fx∗ , and similarly for the complement Fx∗

29

preserved by the IHT update.

To get a handle on the coefficients, in Step II.A, we derive an upper-bound on the

error incurred by each non-zero element of the estimated coefficient vector, i.e., |̂xi−x∗i |
for i ∈ S for a general coefficient vector x∗, and show that this error only depends

on εt (the column-wise error in the dictionary) given enough IHT iterations R as per

the chosen decay parameter δR. In addition, for analysis of the dictionary update, we

develop an expression for the estimated coefficient vector in Step II.B.

We then use the coefficient estimate to show that the gradient vector satisfies the

local descent condition (Def. 2.5). This ensures that the gradient makes progress after

taking the gradient descent-based step (2.6). To begin, we first develop an expression

for the expected gradient vector (corresponding to each dictionary element) in Step

III.A. Here, we use the closeness property Def 2.1 of the dictionary estimate. Further,

since we use an empirical estimate, we show that the empirical gradient vector con-

centrates around its mean in Step III.B. Now using Lemma 2.15, we have that descent

along this direction makes progress.

Next in Step IV.A and Step IV.B, we show that the updated dictionary estimate

maintains the closeness property Def 2.1. This sets the stage for the next dictionary

update iteration. As a result, our main result establishes the conditions under which

any t-th iteration succeeds.

Our main result is as follows.

Theorem 2.1 (Main Result) Suppose that assumptions A.1-A.6 hold, and Algorithm 1 is

provided with p = Ω̃(mk2) new samples generated according to model (2.1) at each iteration

t. Then, with probability at least (1− δ(t)
alg), given R = Ω(log(n)), the coefficient estimate x̂(t)

i

at t-th iteration has the correct signed-support and satisfies

(̂x(t)
i − x∗i)

2 = O(k(1−ω)t/2‖A(0)
i −A∗i‖), for all i ∈ supp(x∗).

Furthermore, for some 0 < ω < 1/2, the estimate A(t) at (t)-th iteration satisfies

‖A(t)
i −A∗i‖

2 ≤ (1−ω)t‖A(0)
i −A∗i‖

2, for all t = 1,2,

Here, δ(t)
alg is some small constant, where δ(t)

alg = δ
(t)
T + δ(t)

β + δHW + δ(t)
gi + δ(t)

g , δ(t)
T = 2m

exp(−C2/O∗(ε2
t)), δ(t)

β = 2kexp(−1/O(εt)), δ
(t)
HW = exp(−1/O(εt)), δ

(t)
gi = exp(−Ω(k)), δ(t)

g =

(n+m)exp(−Ω(m
√

log(n)), and ‖A(t)
i −A∗i‖ ≤ εt.

30

Step I: Coefficients have the correct signed-support

As a first step, we ensure that our coefficient estimate has the correct signed-support

(Def. 2.2). To this end, we first show that the initialization has the correct signed-

support, and then show that the iterative hard-thresholding (IHT)-based update step

preserves the correct signed-support for a suitable choice of parameters.

• Step I.A: Showing that the initial coefficient estimate has the correct signed-

support– Given an (ε0,2)-close estimate A(0) of A∗, we first show that for a general

sample y the initialization step (2.3) recovers the correct signed-support with

probability at least (1−δ(t)
T), where δ(t)

T = 2m exp(− C2

O∗(ε2
t)

). This is encapsulated by

the following lemma.

Lemma 2.1 (Signed-support recovery by coefficient initialization step). Sup-

pose A(t) is εt-close to A∗. Then, if µ = O(log(n)), k = O∗(
√
n/µ log(n)), and εt = O∗

(1/
√

log(m)), with probability at least (1− δ(t)
T) for each random sample y = A∗x∗:

sign(TC/2((A(t))>y) = sign(x∗),

where δ(t)
T = 2m exp(− C2

O∗(ε2
t)

).

Note that this result only requires the dictionary to be column-wise close to the

true dictionary, and works for less stringent conditions on the initial dictionary

estimate, i.e., requires εt = O∗(1/
√

log(m)) instead of εt = O∗(1/ log(m)); see also

(Arora et al., 2015).

• Step I.B: The iterative IHT-type updates preserve the correct signed support–

Next, we show that the IHT-type coefficient update step (2.4) preserves the cor-

rect signed-support for an appropriate choice of step-size parameter η(r)
x and

threshold τ (r). The choice of these parameters arises from the analysis of the

IHT-based update step. Specifically, we show that at each iterate r, the step-size

η
(r)
x should be chosen to ensure that the component corresponding to the true

coefficient value is greater than the “interference” introduced by other non-zero

coefficient elements. Then, if the threshold is chosen to reject this “noise”, each

iteration of the IHT-based update step preserves the correct signed-support.

Lemma 2.2 (IHT update step preserves the correct signed-support). Suppose

A(t) is εt-close to A∗, µ = O(log(n)), k = O∗(
√
n/µ log(n)), and εt = O∗(1/ log(m))

31

Then, with probability at least (1−δ(t)
β −δ

(t)
T), each iterate of the IHT-based coeffi-

cient update step shown in (2.4) has the correct signed-support, if for a constant

c
(r)
1 (εt ,µ,k,n) = Ω̃(k2/n), the step size is chosen as η(r)

x ≤ c
(r)
1 , and the threshold

τ (r) is chosen as

τ (r) = η(r)
x (tβ + µt√

n
‖x(r−1) − x∗‖1) := c(r)

2 (εt ,µ,k,n) = Ω̃(k2/n),

for some constants c1 and c2. Here, tβ = O(
√
kεt), δ

(t)
T = 2m exp(− C2

O∗(ε2
t)

) ,and

δ
(t)
β = 2k exp(− 1

O(εt)
).

Note that, although we have a dependence on the iterate r in choice of η(r)
x and

τ (r), these can be set to some constants independent of r. In practice, this depen-

dence allows for greater flexibility in the choice of these parameters.

Step II: Analyzing the coefficient estimate

We now derive an upper-bound on the error incurred by each non-zero coefficient

element. Further, we derive an expression for the coefficient estimate at the t-th round

of the online algorithm x̂(t) := x(R); we use x̂ instead of x̂(t) for simplicity.

• Step II.A: Derive a bound on the error incurred by the coefficient estimate–

Since Lemma 2.2 ensures that x̂ has the correct signed-support, we now focus on

the error incurred by each coefficient element on the support by analyzing x̂. To

this end, we carefully analyze the effect of the recursive update (2.4), to decom-

pose the error incurred by each element on the support into two components –

one that depends on the initial coefficient estimate x(0) and other that depends

on the error in the dictionary.

We show that the effect of the component that depends on the initial coefficient

estimate diminishes by a factor of (1 − ηx + ηx
µt√
n

) at each iteration r. Therefore,

for a decay parameter δR, we can choose the number of IHT iterations R, to make

this component arbitrarily small. Therefore, the error in the coefficients only

depends on the per column error in the dictionary, formalized by the following

result.

Lemma 2.3 (Upper-bound on the error in coefficient estimation). With proba-

bility at least (1−δ(t)
β −δ

(t)
T) the error incurred by each element i1 ∈ supp(x∗) of the

32

coefficient estimate is upper-bounded as

|̂xi1 − x∗i1 | ≤ O(tβ) +
(
(R+ 1)kηx

µt√
n

max
i
|x(0)
i − x∗i |+ |x

(0)
i1
− x∗i1 |

)
δR,= O(tβ)

where tβ = O(
√
kεt), δR := (1 − ηx + ηx

µt√
n

)R, δ(t)
T = 2m exp(− C2

O∗(ε2
t)

), δ(t)
β = 2k exp

(− 1
O(εt)

), and µt is the incoherence between the columns of A(t); see Claim 1.

This result allows us to show that if the column-wise error in the dictionary de-

creases at each iteration t, then the corresponding estimates of the coefficients

also improve.

• Step II.B: Developing an expression for the coefficient estimate– Next, we derive the

expression for the coefficient estimate in the following lemma. This expression

is used to analyze the dictionary update.

Lemma 2.4 (Expression for the coefficient estimate at the end of R-th IHT iter-

ation). With probability at least (1−δ(t)
T −δ

(t)
β) the i1-th element of the coefficient

estimate, for each i1 ∈ supp(x∗), is given by

x̂i1 := x(R)
i1

= x∗i1(1−λ(t)
i1

) +ϑ(R)
i1
.

Here, ϑ(R)
i1

is |ϑ(R)
i1
| = O(tβ), where tβ = O(

√
kεt). Further, λ(t)

i1
= |〈A(t)

i1
−A∗i1 ,A

∗
i1
〉| ≤

ε2
t

2 , δ(t)
T = 2m exp(− C2

O∗(ε2
t)

) and δ(t)
β = 2k exp(− 1

O(εt)
).

We again observe that the error in the coefficient estimate depends on the error

in the dictionary via λ(t)
i1

and ϑ(R)
i1

.

Step III: Analyzing the gradient for dictionary update

Given the coefficient estimate we now show that the choice of the gradient as shown

in (2.5) makes progress at each step. To this end, we analyze the gradient vector corre-

sponding to each dictionary element to see if it satisfies the local descent condition of

Def. 2.5. Our analysis of the gradient is motivated from Arora et al. (2015). However,

as opposed to the simple HT-based coefficient update step used by Arora et al. (2015),

our IHT-based coefficient estimate adds to significant overhead in terms of analysis.

Notwithstanding the complexity of the analysis, we show that this allows us to remove

the bias in the gradient estimate.

33

To this end, we first develop an expression for each expected gradient vector, show

that the empirical gradient estimate concentrates around its mean, and finally show

that the empirical gradient vector is (Ω(k/m),Ω(m/k),0)-correlated with the descent

direction, i.e. has no bias.

• Step III.A: Develop an expression for the expected gradient vector correspond-

ing to each dictionary element– The expression for the expected gradient vector

g(t)
j corresponding to j-th dictionary element is given by the following lemma.

Lemma 2.5 (Expression for the expected gradient vector). Suppose that A(t) is

(εt ,2)-near to A∗. Then, the dictionary update step in Algorithm 1 amounts to

the following for the j-th dictionary element

E[A(t+1)
j] = A(t)

j + ηAg(t)
j ,

where g(t)
j is given by

g(t)
j = qjpj

(
(1−λ(t)

j)A(t)
j −A∗j + 1

qjpj
∆

(t)
j ±γ

)
,

λ
(t)
j = |〈A(t)

j −A∗j ,A
∗
j〉|, and ∆

(t)
j := E[A(t)

S ϑ
(R)
S sign(x∗j)], where ‖∆(t)

j ‖ = O(
√
mqi,jpjεt

‖A(t)‖).

• Step III.B: Show that the empirical gradient vector concentrates around its

expectation– Since we only have access to the empirical gradient vectors, we

show that these concentrate around their expected value via the following lemma.

Lemma 2.6 (Concentration of the empirical gradient vector). Given p = Ω̃(mk2)

samples, the empirical gradient vector estimate corresponding to the i-th dictio-

nary element, ĝ(t)
i concentrates around its expectation, i.e.,

‖̂g(t)
i − g(t)

i ‖ ≤ o(kmεt).

with probability at least (1− δ(t)
gi − δ

(t)
β − δ

(t)
T − δ

(t)
HW), where δ(t)

gi = exp(−Ω(k)).

• Step III.C: Show that the empirical gradient vector is correlated with the descent

direction– Next, in the following lemma we show that the empirical gradient vec-

tor ĝ(t)
j is correlated with the descent direction. This is the main result which

enables the progress in the dictionary (and coefficients) at each iteration t.

34

Lemma 2.7 (Empirical gradient vector is correlated with the descent direc-

tion). Suppose A(t) is (εt ,2)-near to A∗, k = O(
√
n) and ηA = O(m/k). Then, with

probability at least (1− δ(t)
T − δ

(t)
β − δ

(t)
HW − δ

(t)
gi) the empirical gradient vector ĝ(t)

j is

(Ω(k/m),Ω(m/k),0)-correlated with (A(t)
j −A∗j), and for any t ∈ [T],

‖A(t+1)
j −A∗j‖

2 ≤ (1− ρ ηA)‖A(t)
j −A∗j‖

2.

This result ensures for at any t ∈ [T], the gradient descent-based updates made

via (2.5) gets the columns of the dictionary estimate closer to the true dictionary,

i.e., εt+1 ≤ εt. Moreover, this step requires closeness between the dictionary esti-

mate A(t) and A∗, in the spectral norm-sense, as per Def 2.1.

Step IV: Show that the dictionary maintains the closeness property

As discussed above, the closeness property (Def 2.1) is crucial to show that the gradi-

ent vector is correlated with the descent direction. Therefore, we now ensure that the

updated dictionary A(t+1) maintains this closeness property. Lemma 2.7 already en-

sures that εt+1 ≤ εt. As a result, we show that A(t+1) maintains closeness in the spectral

norm-sense as required by our algorithm, i.e., that it is still (εt+1,2)-close to the true

dictionary. Also, since we use the gradient matrix in this analysis, we show that the

empirical gradient matrix concentrates around its mean.

• Step IV.A: The empirical gradient matrix concentrates around its expectation: We

first show that the empirical gradient matrix concentrates as formalized by the

following lemma.

Lemma 2.8 (Concentration of the empirical gradient matrix). With probability

at least (1−δ(t)
β −δ

(t)
T −δ

(t)
HW−δ

(t)
g), ‖̂g(t)−g(t)‖ is upper-bounded byO∗(km‖A

∗‖), where

δ
(t)
g = (n+m)exp(−Ω(m

√
log(n)).

• Step IV.B: The “closeness” property is maintained after the updates made using the

empirical gradient estimate: Next, the following lemma shows that the updated

dictionary A(t+1) maintains the closeness property.

Lemma 2.9 (A(t+1) maintains closeness). Suppose A(t) is (εt ,2) near to A∗ with

εt = O∗(1/ log(n)), and number of samples used in step t is p = Ω̃(mk2), then with

probability at least (1−δ(t)
T −δ

(t)
β −δ

(t)
HW−δ

(t)
g), A(t+1) satisfies ‖A(t+1)−A∗‖ ≤ 2‖A∗‖.

35

Step V: Combine results to show the main result

Proof of Theorem 2.1. From Lemma 2.7 we have that with probability at least (1−δ(t)
T −

δ
(t)
β − δ

(t)
HW − δ

(t)
gi), g(t)

j is (Ω(k/m),Ω(m/k),0)-correlated with A∗j . Further, Lemma 2.9

ensures that each iterate maintains the closeness property. Now, applying Lemma 2.15

we have that, for ηA ≤Θ(m/k), with probability at least (1− δ(t)
alg) any t ∈ [T] satisfies

‖A(t)
j −A∗j‖

2 ≤ (1−ω)t‖A(0)
j −A∗j‖

2 ≤ (1−ω)tε2
0.

where for 0 < ω < 1/2 with ω = Ω(k/m)ηA. That is, the updates converge geometrically

to A∗. Further, from Lemma 2.3, we have that the result on the error incurred by

the coefficients. Here, δ(t)
alg = δ(t)

T + δ(t)
β + δ(t)

HW + δ(t)
gi + δ(t)

g). That is, the updates converge

geometrically to A∗. Further, from Lemma 2.3, we have that the error in the coefficients

only depends on the error in the dictionary, which leads us to our result on the error

incurred by the coefficients. This completes the proof of our main result.

2.C Appendix: Proof of Lemmas

We present the proofs of the Lemmas used to establish our main result. Also, see

Table 2.B.1 for a map of dependence between the results, and Appendix 2.D for proofs

of intermediate results.

Proof of Lemma 2.1. Let y ∈Rn be general sample generated as y = A∗x∗, where x∗ ∈Rm

is a sparse random vector with support S = supp(x∗) distributed according to D.2.4.

The initial decoding step at the t-th iteration (shown in Algorithm 1) involves eval-

uating the inner-product between the estimate of the dictionary A(t), and y. The i-th

element of the resulting vector can be written as

〈A(t)
i ,y〉 = 〈A(t)

i ,A
∗
i〉x
∗
i + wi ,

where wi = 〈A(t)
i ,A

∗
−ix
∗
−i〉. Now, since ‖A∗i −A(t)

i ‖2 ≤ εt and

‖A∗i −A(t)
i ‖

2
2 = ‖A∗i‖

2 + ‖A(t)
i ‖

2 − 2〈A(t)
i ,A

∗
i〉 = 2− 2〈A(t)

i ,A
∗
i〉,

36
Table 2.B.1: Proof map: dependence of results.

Lemmas Result Dependence
Lemma 2.1 Signed-support recovery

by coefficient initializa-
tion step

–

Lemma 2.2 IHT update step preserves
the correct signed-support

Claim 1,
Lemma 2.1,
and
Claim 2

Lemma 2.3 Upper-bound on the error
in coefficient estimation

Claim 1,
Claim 2,
Claim 3,
and
Claim 4

Lemma 2.4 Expression for the coeffi-
cient estimate at the end of
R-th IHT iteration

Claim 5

Lemma 2.5 Expression for the ex-
pected gradient vector

Lemma 2.4
and
Claim 7

Lemma 2.6 Concentration of the em-
pirical gradient vector

Claim 8
and
Claim 9

Lemma 2.7 Empirical gradient vector
is correlated with the de-
scent direction

Lemma 2.5,
Claim 7
and
Lemma 2.6

Lemma 2.8 Concentration of the em-
pirical gradient matrix

Claim 8
and
Claim 10

Lemma 2.9 A(t+1) maintains closeness Lemma 2.5,
Claim 7
and
Lemma 2.8

Claims Result Dependence
Claim 1 Incoherence of A(t) –

Claim 2 Bound on β
(t)
j : the noise

component in coefficient
estimate that depends on
εt

–

Claim 3 Error in coefficient estima-
tion for a general iterate
(r + 1)

–

Claim 4 An intermediate result for
bounding the error in co-
efficient calculations

Claim 2

Claim 5 Bound on the noise term
in the estimation of a coef-
ficient element in the sup-
port

Claim 6

Claim 6 An intermediate result for
ϑ

(R)
i1

calculations
Claim 3

Claim 7 Bound on the noise term
in expected gradient vec-
tor estimate

Claim 6
and
Claim 2

Claim 8 An intermediate result for
concentration results

Lemma 2.2
,Lemma 2.4
and
Claim 5

Claim 9 Bound on variance param-
eter for concentration of
gradient vector

Claim 5

Claim 10 Bound on variance param-
eter for concentration of
gradient matrix

Lemma 2.2
,
Lemma 2.4
and
Claim 5

Lemma 2.1

Claim 1

Claim 2

Lemma 2.2

Claim 3

Claim 4

Lemma 2.3

Claim 5

Lemma 2.4

Lemma 2.5

Claim 6

Claim 7

Lemma 2.6

Claim 8

Claim 9

Lemma 2.7

Lemma 2.8

Claim 10

Lemma 2.9

Theorem 2.1

37

we have

|〈A(t)
i ,A

∗
i〉| ≥ 1− ε2

t /2.

Therefore, the term

|〈A(t)
i ,A

∗
i〉x
∗
i |

≥ (1− ε
2
t

2)C , if i ∈ S,

= 0 ,otherwise.

Now, we focus on the wi and show that it is small. By the definition of wi we have

wi = 〈A(t)
i ,A

∗
−ix
∗
−i〉 =

∑̀
,i
〈A(t)

i ,A
∗
`〉x
∗
` =

∑
`∈S\{i}

〈A(t)
i ,A

∗
`〉x
∗
`.

Here, since var(x∗`) = 1, wi is a zero-mean random variable with variance

var(wi) =
∑

`∈S\{i}
〈A(t)

i ,A
∗
`〉

2.

Now, each term in this sum can be bounded as,

〈A(t)
i ,A

∗
`〉

2 = (〈A(t)
i −A∗i ,A

∗
`〉+ 〈A

∗
i ,A
∗
`〉)

2

≤ 2(〈A(t)
i −A∗i ,A

∗
`〉

2 + 〈A∗i ,A
∗
`〉

2)

≤ 2(〈A(t)
i −A∗i ,A

∗
`〉

2 + µ2

n).

Next,
∑̀
,i
〈A(t)

i −A∗i ,A
∗
`〉

2 can be upper-bounded as

∑
`∈S\{i}

〈A(t)
i −A∗i ,A

∗
`〉

2 ≤ ‖A∗S\{i}‖
2ε2
t .

Therefore, we have the following as per our assumptions on µ and k,

‖A∗S\{i}‖
2 ≤ (1 + k µ√

n
) ≤ 2,

using Gershgorin Circle Theorem (Gershgorin, 1931). Therefore, we have

∑
`∈S\{i}

〈A(t)
i −A∗i ,A

∗
`〉

2 ≤ 2ε2
t .

38

Finally, we have that

∑
`∈S\{i}

〈A(t)
i ,A

∗
`〉

2 ≤ 2(2ε2
t + k µ

2

n) = O∗(ε2
t).

Now, we apply the Chernoff bound for sub-Gaussian random variables wi (shown in

Lemma 2.12) to conclude that

Pr[|wi | ≥ C/4] ≤ 2exp(− C2

O∗(ε2
t)

).

Further, wi corresponding to each m should follow this bound, applying union bound

we conclude that

Pr[max
i
|wi | ≥ C/4] ≤ 2mexp(− C2

O∗(ε2
t)

) := δ(t)
T .

Proof of Lemma 2.2. Consider the (r + 1)-th iterate x(r+1) for the t-th dictionary iterate,

where ‖A(t)
i −A∗i‖ ≤ εt for all i ∈ [1,m] evaluated as the following by the update step

described in Algorithm 1,

x(r+1) = x(r) − η(r+1)
x A(t)>(A(t)x(r) − y)

= (I− η(r+1)
x A(t)>A(t))x(r) − η(r+1)

x A(t)>A∗x∗, (2.7)

where η(1)
x < 1 is the learning rate or the step-size parameter. Now, using Lemma 2.1

we know that x(0) (2.3) has the correct signed-support with probability at least (1−δ(t)
T).

Further, since A(t)>A∗ can be written as

A(t)>A∗ = (A(t) −A∗)>A∗ + A∗>A∗,

we can write the (r + 1)-th iterate of the coefficient update step using (2.7) as

x(r+1) = (I− η(r+1)
x A(t)>A(t))x(r) − η(r+1)

x (A(t) −A∗)>A∗x∗ + η(r+1)
x A∗>A∗x∗.

Further, the j-th entry of this vector is given by

x(r+1)
j =(I− η(r+1)

x A(t)>A(t))(j,:)x
(r) − η(r+1)

x ((A(t) −A∗)>A∗)(j,:)x
∗+η(r+1)

x (A∗>A∗)(j,:)x
∗. (2.8)

39

We now develop an expression for the j-th element of each of the term in (2.8) as

follows. First, we can write the first term as

(I− η(r+1)
x A(t)>A(t))(j,:)x

(r) = (1− η(r+1)
x)x(r)

j − η
(r+1)
x

∑
i,j
〈A(t)

j ,A
(t)
i 〉x

(r)
i .

Next, the second term in (2.8) can be expressed as

η
(r+1)
x ((A(t) −A∗)>A∗)(j,:)x

∗ = η(r+1)
x

∑
i
〈A(t)

j −A∗j ,A
∗
i〉x
∗
i

= η(r+1)
x 〈A(t)

j −A∗j ,A
∗
j〉x
∗
j + η(r+1)

x
∑
i,j
〈A(t)

j −A∗j ,A
∗
i〉x
∗
i .

Finally, we have the following expression for the third term,

η
(r+1)
x (A∗>A∗)(j,:)x

∗ = η(r+1)
x x∗j + η(r+1)

x
∑
i,j
〈A∗j ,A

∗
i〉x
∗
i .

Now using our definition of λ(t)
j = |〈A(t)

j −A∗j ,A
∗
j〉| ≤

ε2
t

2 , combining all the results for

(2.8), and using the fact that since A(t) is close to A∗, vectors A(t)
j −A∗j and A∗j enclose an

obtuse angle, we have the following for the j-th entry of the (r + 1)-th iterate, x(r+1) is

given by

x(r+1)
j = (1− η(r+1)

x)x(r)
j + η(r+1)

x (1−λ(t)
j)x∗j + η(r+1)

x ξ
(r+1)
j . (2.9)

Here ξ(r+1)
j is defined as

ξ
(r+1)
j :=

∑
i,j

(〈A(t)
j −A∗j ,A

∗
i〉+ 〈A

∗
j ,A
∗
i〉)x

∗
i −

∑
i,j
〈A(t)

j ,A
(t)
i 〉x

(r)
i .

Since, 〈A∗j ,A
∗
i〉 − 〈A

(t)
j ,A

(t)
i 〉 = 〈A∗j ,A

∗
i −A(t)

i 〉+ 〈A
∗
j −A(t)

j ,A
(t)
i 〉, we can write ξ(r+1)

j as

ξ
(r+1)
j = β(t)

j +
∑
i,j
〈A(t)

j ,A
(t)
i 〉(x

∗
i − x(r)

i), (2.10)

where β(t)
j is defined as

β
(t)
j :=

∑
i,j

(〈A∗j ,A
∗
i −A(t)

i 〉+ 〈A
∗
j −A(t)

j ,A
(t)
i 〉+ 〈A

(t)
j −A∗j ,A

∗
i〉)x

∗
i . (2.11)

40

Note that β(t)
j does not change for each iteration r of the coefficient update step. Fur-

ther, by Claim 2 we show that |β(t)
j | ≤ tβ = O(

√
kεt) with probability at least (1 − δ(t)

β).

Next, we define ξ̃(r+1)
j as

ξ̃
(r+1)
j := β(t)

j +
∑
i,j
|〈A(t)

j ,A
(t)
i 〉||x

∗
i − x(r)

i |. (2.12)

where ξ(r+1)
j ≤ ξ̃(r+1)

j . Further, using Claim 1,

ξ̃
(r+1)
j ≤ tβ + µt√

n
‖x∗j − x(r)

j ‖1 := ξ̃(r+1)
max = Õ(k√

n
), (2.13)

since ‖x(r−1)−x∗‖1 = O(k). Therefore, for the (r+1)-th iteration, we choose the threshold

to be

τ (r+1) := η(r+1)
x ξ̃

(r+1)
max , (2.14)

and the step-size by setting the “noise” component of (2.9) to be smaller than the “sig-

nal” part, specifically, half the signal component, i.e.,

η
(r+1)
x ξ̃

(r+1)
max ≤

(1−η(r+1)
x)
2 x(r)

min + η
(r+1)
x

2 (1− ε
2
t

2)C,

Also, since we choose the threshold as τ (r) := η
(r)
x ξ̃

(r)
max, x(r)

min = η
(r)
x ξ̃

(r)
max, where x(0)

min =

C/2, we have the following for the (r + 1)-th iteration,

η
(r+1)
x ξ̃

(r+1)
max ≤

(1−η(r+1)
x)
2 η

(r)
x ξ̃

(r)
max + η

(r+1)
x

2 (1− ε
2
t

2)C.

Therefore, for this step we choose η(r+1)
x as

η
(r+1)
x ≤

η
(r)
x

2 ξ̃
(r)
max

ξ̃
(r+1)
max +

η
(r)
x

2 ξ̃
(r)
max−1

2 (1−ε
2
t

2)C

, (2.15)

Therefore, η(r+1)
x can be chosen as

η
(r+1)
x ≤ c(r+1)(εt ,µ,k,n),

for a small constant c(r+1)(εt ,µ,k,n), η(r+1)
x . In addition, if we set all η(r)

x = ηx, we have

41

that ηx = Ω̃(k√
n

) and therefore τ (r) = τ = Ω̃(k
2

n). Further, since we initialize with the

hard-thresholding step, the entries in |x(0)| ≥ C/2. Here, we define ξ̃(0)
max = C and η(0)

x =

1/2, and set the threshold for initial step as η(0)
x ξ̃

(0)
max.

Proof of Lemma 2.3. Using the definition of ξ̃(`)
i1

as in (2.12), we have

ξ̃
(`)
i1

= β(t)
i1

+
∑
i2,i1

|〈A(t)
i1
,A(t)

i2
〉||x∗i2 − x(`−1)

i2
|.

From Claim 2 we have that |β(t)
i1
| ≤ tβ with probability at least (1− δ(t)

β). Further, using

Claim 1 , and letting C(`)
i := |x∗i − x(`)

i | = |x
(`)
i − x∗i |, ξ̃

(`)
i1

can be upper-bounded as

ξ̃
(`)
i1
≤ β(t)

i1
+ µt√

n

∑
i2,i1

C
(`−1)
i2

. (2.16)

Rearranging the expression for (r + 1)-th update (2.9), and using (2.16) we have the

following upper-bound

C
(r+1)
i1

≤ (1− η(r+1)
x)C(r)

i1
+ η(r+1)

x λ
(t)
i1
|x∗i1 |+ η

(r+1)
x ξ̃

(r+1)
i1

.

Next, recursively substituting in for C(r)
i1

, where we define
∏`
q=`(1− η

(q+1)
x) = 1,

C
(r+1)
i1
≤ C(0)

i1

r∏
q=0

(1− η(q+1)
x) +λ(t)

i1
|x∗i1 |

r+1∑̀
=1
η

(`)
x

r+1∏
q=`

(1− η(q+1)
x) +

r+1∑̀
=1
η

(`)
x ξ̃

(`)
i1

r+1∏
q=`

(1− η(q+1)
x).

Substituting for the upper-bound of ξ̃(`)
i1

from (2.16),

C
(r+1)
i1

≤ α(r+1)
i1

+ µt√
n

r+1∑̀
=1
η

(`)
x

∑
i2,i1

C
(`−1)
i2

r+1∏
q=`

(1− η(q+1)
x). (2.17)

Here, α(r+1)
i1

is defined as

α
(r+1)
i1

= C(0)
i1

r∏
q=0

(1− η(q+1)
x) + (λ(t)

i1
|x∗i1 |+ β

(t)
i1

)
r+1∑̀
=1
η

(`)
x

r+1∏
q=`

(1− η(q+1)
x). (2.18)

Our aim now will be to express C(`)
i1

for ` > 0 in terms of C(0)
i2

. Let each α(`)
j ≤ α

(`)
i where

j = i1, i2, . . . , ik . Similarly, let C(0)
j ≤ C

(0)
i for j = i1, i2, . . . , ik , and all η(`)

x = ηx. Then, using

42

Claim 3 we have the following expression for C(R+1)
i1

,

C
(R+1)
i1

≤ α(R+1)
i1

+ (k − 1)ηx
µt√
n

R∑̀
=1
α

(`)
max

(
1− ηx+ηx

µt√
n

)R−`
+ (k − 1)ηx

µt√
n
C

(0)
max

(
1− ηx + ηx

µt√
n

)R
.

Here, (1−ηx)R ≤ (1−ηx+ηx
µt√
n

)R ≤ δR. Next from Claim 4 we have that with probability

at least (1− δ(t)
β),

R∑̀
=1
α

(`)
max

(
1− ηx + ηx

µt√
n

)R−`
≤ C(0)

maxRδR + 1
ηx(1−

µt√
n

)
(ε

2
t

2 |x
∗
max|+ tβ).

Therefore, for cx = µt√
n
/(1− µt√

n
)

C
(R+1)
i1

≤ α(R+1)
i1

+ (k − 1)cx(
ε2
t

2 |x
∗
max|+ tβ) + (R+ 1)(k − 1)ηx

µt√
n
C

(0)
maxδR.

Now, using the definition of α(R+1)
i1

, and using the result on sum of geometric series, we

have

α
(R+1)
i1

= C(0)
i1

(1− ηx)R+1 + (λ(t)
i1
|x∗i1 |+ β

(t)
i1

)
R+1∑
s=1

ηx(1− ηx)R−s+1,

= C(0)
i1
δR +λ(t)

i1
|x∗i1 |+ β

(t)
i1
≤ C(0)

i1
δR+1 + ε2

t
2 |x
∗
max|+ tβ .

Therefore, C(R)
i1

is upper-bounded as

C
(R)
i1
≤ (cxk + 1)(ε

2
t

2 |x
∗
max|+ tβ) + (R+ 1)kηx

µt√
n
C

(0)
maxδR +C(0)

i1
δR.

Further, since k = O(
√
n/µ log(n)), kcx < 1, therefore, we have

C
(R)
i1
≤ O(tβ) + (R+ 1)kηx

µt√
n
C

(0)
maxδR +C(0)

i1
δR,

with probability at least (1− δ(t)
β). Here, (R+ 1)kηx

µt√
n
C

(0)
maxδR +C(0)

i1
δR u 0 for an appro-

priately large R. Therefore, the error in each non-zero coefficient is

C
(R)
i1

= O(tβ).

43

with probability at least (1− δ(t)
β).

Proof of Lemma 2.4. Using the expression for x(R)
i1

as defined in (2.9), and recursively

substituting for x(r)
i1

we have

x(R)
i1

= (1− ηx)Rx(0)
j + x∗i1

R∑
r=1
ηx(1−λ

(t)
i1

)(1− ηx)R−r +
R∑
r=1
ηxξ

(r)
i1

(1− ηx)R−r ,

where we set all ηrx to be ηx. Further, on defining

ϑ
(R)
i1

:=
R∑
r=1
ηxξ

(r)
i1

(1− ηx)R−r +γ (R)
i1
, (2.19)

where γ (R)
i1

:= (1− ηx)R(x(0)
i1
− x∗i1(1−λ(t)

i1
)), we have

x(R)
i1

= (1− ηx)Rx(0)
i1

+ x∗i1(1−λ(t)
i1

)(1− (1− ηx)R) +
R∑
r=1
ηxξ

(r)
i1

(1− ηx)R−r ,

= x∗i1(1−λ(t)
i1

) +ϑ(R)
i1
. (2.20)

Note that γ (R)
i1

can be made appropriately small by choice of R. Further, by Claim 5

we have

|ϑ(R)
i1
| ≤ O(tβ).

with probability at least (1− δ(t)
β), where tβ = O(

√
kεt).

Proof of Lemma 2.5. From Lemma 2.4 we have that for each j ∈ S,

x̂S := x(R)
S = (I−Λ(t)

S)x∗S +ϑ(R)
S ,

with probability at least (1 − δ(t)
T − δ

(t)
β). Further, let Fx∗ be the event that sign(x∗) =

sign(̂x), and let 1Fx∗ denote the indicator function corresponding to this event. As we

show in Lemma 2.2, this event occurs with probability at least (1−δ(t)
β −δ

(t)
T). Using this,

we can write the expected gradient vector corresponding to the j-th sample as 1Fx∗

g(t)
j = E[(A(t)̂x− y)sign(x∗j)1Fx∗] + E[(A(t)̂x− y)sign(x∗j)1F x∗

],

= E[(A(t)̂x− y)sign(x∗j)1Fx∗]±γ.

44

Here, γ := E[(A(t)̂x−y)sign(x∗j)1F x∗
] is small and depends on δ(t)

T and δ(t)
β , which in turn

drops with εt. Therefore, γ diminishes with εt. Further, since 1Fx∗ + 1F x∗
= 1, and

Pr[Fx∗] = (1− δ(t)
β − δ

(t)
T), is very large,

g(t)
j = E[(A(t)̂x− y)sign(x∗j)(1−1F x∗

)]±γ,

= E[(A(t)̂x− y)sign(x∗j)]±γ.

Therefore, we can write g(t)
j as

g(t)
j = E[(A(t)̂x− y)sign(x∗j)]±γ,

= E[(1− ηx)RA(t)
S x(0)

S + A(t)
S (I−Λ(t)

S)x∗S + A(t)
S ϑ

(R)
S −A∗Sx

∗
S)sign(x∗j)]±γ.

Since E[(1−ηx)RA(t)
S x(0)

S] can be made very small by choice of R, we absorb this term in

γ . Therefore,

g(t)
j = E[A(t)

S (I−Λ(t)
S)x∗S + A(t)

S ϑ
(R)
S −A∗Sx

∗
S)sign(x∗j)]±γ.

Writing the expectation by sub-conditioning on the support,

g(t)
j = ES [Ex∗S [A(t)

S (I−Λ(t)
S)x∗Ssign(x∗j)−A∗Sx∗Ssign(x∗j) + A(t)

S ϑ
(R)
S sign(x∗j)|S]]±γ,

= ES [A(t)
S (I−Λ(t)

S)Ex∗S [x∗Ssign(x∗j)|S]−A∗SEx∗S [x∗Ssign(x∗j)|S]] + E[A(t)
S ϑ

(R)
S sign(x∗j)]±γ,

= ES [pj(1−λ
(t)
j)A(t)

j − pjA
∗
j] +∆

(t)
j ±γ,

where we have used the fact that Ex∗S [sign(x∗j)] = 0 and introduced

∆
(t)
j = E[A(t)

S ϑ
(R)
S sign(x∗j)].

Next, since pj = Ex∗S [x∗jsign(x∗j)|j ∈ S], therefore,

g(t)
j = ES [pj(1−λ

(t)
j)A(t)

j − pjA
∗
j] +∆

(t)
j ±γ.

Further, since qj = Pr[j ∈ S] = O(k/m),

g(t)
j = qjpj

(
(1−λ(t)

j)A(t)
j −A∗j + 1

qjpj
∆

(t)
j ±γ

)
.

45

Further, by Claim 7 we have that

‖∆(t)
j ‖ = O(

√
mqi,jpjεt‖A(t)‖)].

This completes the proof.

Proof of Lemma 2.6. Let W = {j : i ∈ supp(x∗(j))} and then we have that

ĝ(t)
i = |W |p

1
|W |

∑
j(y(j) −A(t)̂x(j))sign(̂x(j)(i)),

where x̂(j)(i) denotes the i-th element of the coefficient estimate corresponding to the

(j)-th sample. Here, for ` = |W | the summation

∑
j

1
` (y(j) −A(t)̂x(j))sign(̂x(j)(i)),

has the same distribution as Σ`j=1zj , where each zj belongs to a distribution as

z := 1
` (y−A(t)̂x)sign(̂xi)|i ∈ S.

Also, E[(y − A(t)̂x)sign(̂xi)] = qiE[z], where qi = Pr[x∗i , 0] = Θ(km). Therefore, since

p = Ω̃(mk2), we have ` = pqi = Ω̃(k3) non-zero vectors,

‖̂g(t)
i − g(t)

i ‖ = O(km)‖Σ`j=1(zj −E[z])‖. (2.21)

Let wj = zj −E[z], we will now apply the vector Bernstein result shown in Lemma 2.11.

For this, we require bounds on two parameters for these – L := ‖wj‖ and σ2 := ‖Σj
E[‖wj‖2]‖. Note that, since the quantity of interest is a function of x∗i , which are sub-

Gaussian, they are only bounded almost surely. To this end, we will employ Lemma 2.14

(Lemma 45 in (Arora et al., 2015)) to get a handle on the concentration.

Bound on the norm ‖w‖: This bound is evaluated in Claim 8, which states that with

probability at least (1− δ(t)
β − δ

(t)
T − δ

(t)
HW),

L := ‖w‖ = ‖z−E[z]‖ = 2
` ‖(y−A(t)̂x)sign(̂xi)|i ∈ S‖ ≤ 2

` ‖(y−A(t)̂x)‖ = Õ(
ktβ
`).

Bound on variance parameter E[‖w‖2]: Using Claim 9, we have E[‖z‖2] = O(kε2
t) +

46

O(kt2β). Therefore, the bound on the variance parameter σ2 is given by

σ2 := ‖ΣjE[‖wj‖2]‖ ≤ ‖ΣjE[‖zj‖2]‖ ≤ O(k` ε
2
t) +O(

kt2β
`).

From Claim 2 we have that with probability at least (1 − δ(t)
β), tβ = O(

√
kεt). Applying

vector Bernstein inequality shown in Lemma 2.11 and using Lemma 2.14 (Lemma 45

in (Arora et al., 2015)), choosing ` = Ω̃(k3), we conclude

‖
∑`
j=1 zj −E[z]‖ = O(L) +O(σ) = o(εt),

with probability at least (1−δ(t)
gi), where δ(t)

gi = exp(−Ω(k)). Finally, substituting in (2.21)

we have

‖̂g(t)
i − g(t)

i ‖ = O(km)o(εt).

with probability at least (1− δ(t)
gi − δ

(t)
β − δ

(t)
T − δ

(t)
HW).

Proof of Lemma 2.7. Since we only have access to the empirical estimate of the gradient

ĝ(t)
i , we will show that this estimate is correlated with (A(t)

j −A∗j). To this end, first from

Lemma 2.6 we have that the empirical gradient vector concentrates around its mean,

specifically,

‖̂g(t)
i − g(t)

i ‖ ≤ o(kmεt),

with probability at least (1 − δ(t)
gi − δ

(t)
β − δ

(t)
T − δ

(t)
HW). From Lemma 2.5, we have the

following expression for the expected gradient vector

g(t)
j = pjqj(A

(t)
j −A∗j) + pjqj(−λ

(t)
j A(t)

j + 1
pjqj

∆
(t)
j ±γ).

Let g(t)
j = 4ρ (A(t)

j −A∗j) + v, where 4ρ = pjqj and v is defined as

v = pjqj(−λ
(t)
j A(t)

j + 1
pjqj

∆
(t)
j ±γ). (2.22)

Then, ĝ(t)
i can be written as

ĝ(t)
i = ĝ(t)

i − g(t)
i + g(t)

i ,

47

= (̂g(t)
i − g(t)

i) + 4ρ (A(t)
j −A∗j) + v,

= 4ρ (A(t)
j −A∗j) + ṽ, (2.23)

where ṽ = v + (̂g(t)
i − g(t)

i). Let ‖ṽ‖ ≤ ρ ‖A(t)
i −A∗i‖. Using the definition of v as shown in

(2.22) we have

‖ṽ‖ ≤ qjpjλ
(t)
j ‖A

(t)
j ‖+ ‖∆(t)

j ‖+ o(kmεt)±γ.

Now for the first term, since ‖A(t)
j ‖ = 1, we have λ(t)

j = |〈A(t)
j −A∗j ,A

∗
j〉| =

1
2‖A

(t)
j −A∗j‖

2,

therefore

qjpjλ
(t)
j ‖A

(t)
j ‖ = qjpj

1
2‖A

(t)
j −A∗j‖

2,

Further, using Claim 7

‖∆(t)
j ‖ = O(

√
mqi,jpi1εt‖A

(t)‖).

Now, since ‖A(t) −A∗‖ ≤ 2‖A∗‖ (the closeness property (Def.2.1) is maintained at every

step using Lemma 2.9), and further since ‖A∗‖ = O(
√
m/n), we have that

‖A(t)‖ ≤ ‖A(t) −A∗‖+ ‖A∗‖ = O(
√
m
n).

Therefore, we have

‖∆(t)
j ‖+ o(kmεt)±γ = O(

√
mqi,jpi1εt‖A

(t)‖).

Here, we use the fact that γ drops with decreasing εt as argued in Lemma 2.5. Next,

using (2.23), we have

‖̂g(t)
j ‖ ≤ 4ρ ‖A(t)

j −A∗j‖+ ‖ṽ‖.

Now, letting

‖∆(t)
j ‖+ o(kmεt)±γ = O(

√
mqi,jpi1εt‖A

(t)‖) ≤ qipi
2 ‖A

(t)
j −A∗j‖, (2.24)

48

we have that, for k = O(
√
n)

‖ṽ‖ ≤ qipi‖A
(t)
j −A∗j‖.

Substituting for ‖ṽ‖, this implies that ‖ĝ(t)
j‖2 ≤ 25ρ2‖A(t)

j −A∗j‖
2. Further, we also

have the following lower-bound

〈̂g(t)
j ,A

(t)
j −A∗j〉 ≥ 4ρ ‖A(t)

j −A∗j‖
2 − ‖ṽ‖‖A(t)

j −A∗j‖.

Here, we use the fact that R.H.S. can be minimized only if ṽ is directed opposite to the

direction of A(t)
j −A∗j . Now, we show that this gradient is (ρ ,1/100ρ ,0) correlated,

〈̂g(t)
i ,A

(t)
i −A∗i〉 − ρ ‖A

(t)
i −A∗i‖

2 − 1
100ρ ‖̂g

(t)
i ‖

2,

≥ 4ρ ‖A(t)
i −A∗i‖

2 − ‖ṽ‖‖A(t)
i −A∗i‖ − ρ ‖A

(t)
i −A∗i‖

2 − 1
100ρ ‖̂g

(t)
i ‖

2,

≥ 4ρ ‖A(t)
i −A∗i‖

2 − 2ρ ‖A(t)
i −A∗i‖

2 − 25ρ2‖A(t)
i −A∗i‖2

100ρ ,

≥ ρ ‖A(t)
i −A∗i‖

2 ≥ 0.

Therefore, for this choice of k, i.e. k = O(
√
n), there is no bias in dictionary estimation

in comparison to Arora et al. (2015). This gain can be attributed to estimating the

coefficients simultaneously with the dictionary. Further, since we choose 4ρ = pjqj ,

we have that ρ = Θ(k/m), as a result ρ
+

= 1/100ρ = Ω(m/k). Applying Lemma 2.15 we

have

‖A(t+1)
j −A∗j‖

2 ≤ (1− ρ ηA)‖A(t)
j −A∗j‖

2,

for ηA = O(m/k) with probability at least (1− δ(t)
T − δ

(t)
β − δ

(t)
gi).

Proof of Lemma 2.8. Here, we will prove that ĝ(t) defined as

ĝ(t) =
∑
j(y(j) −A(t)̂x(j))sign(̂x(j))>,

concentrates around its mean. Notice that each summand (y(j) −A(t)̂x(j))sign(̂x(j))> is a

random matrix of the form (y−A(t)̂x)sign(̂x)>. Also, we have g(t) defined as

g(t) = E[(y−A(t)̂x)sign(̂x)>].

49

To bound ‖̂g(t)−g(t)‖, we are interested in ‖
∑p
j=1 Wj‖, where each matrix Wj is given by

Wj = 1
p (y(j) −A(t)̂x(j))sign(̂x(j))

> − 1
pE[(y−A(t)̂x)sign(̂x)>].

Noting that E[Wj] = 0, we will employ the matrix Bernstein result (Lemma 2.10) to

bound ‖̂g(t) − g(t)‖. To this end, we will bound ‖Wj‖ and the variance proxy

v(Wj) = max{‖
∑p
j=1 E[WjW

>
j]‖,‖

∑p
j=1 E[W>j Wj]‖}.

Bound on ‖Wj‖– First, we can bound both terms in the expression for Wj by triangle

inequality as

‖Wj‖ ≤ 1
p‖(y(j) −A(t)̂x(j))sign(̂x(j))

>‖+ 1
p‖E[(y−A(t)̂x)sign(̂x)>‖,

≤ 2
p‖(y−A(t)̂x)sign(̂x)>‖.

Here, we use Jensen’s inequality for the second term, followed by upper-bounding the

expected value of the argument by ‖(y−A(t)̂x)sign(̂x)>‖.
Next, using Claim 8 we have that with probability at least (1 − δ(t)

β − δ
(t)
T − δ

(t)
HW),

‖y−A(t)̂x‖ is Õ(ktβ), and the fact that ‖sign(x)T ‖ =
√
k,

‖Wj‖ ≤ 2
p

√
k‖(y−A(t)̂x)‖ = O(k

√
k
p tβ).

Bound on the variance statistic v(Wj)– For the variance statistic, we first look at

‖
∑

E[WjW
>
j]‖,

E[WjW
>
j] = 1

p2 E[(y(j) −A(t)̂x(j))sign(̂x(j))
> −E[(y−A(t)̂x)sign(̂x)>]

× [sign(̂x(j))(y(j) −A(t)̂x(j))
> − (E[(y−A(t)̂x)sign(̂x)>)>].

Since E[(y−A(t)̂x)sign(̂x)>]E[(y−A(t)̂x)sign(̂x)>]> is positive semidefinite,

E[WjW
>
j] � 1

p2 E[(y(j) −A(t)̂x(j))sign(̂x(j))
>sign(̂x(j))(y(j) −A(t)̂x(j))

>].

Now, since each x̂(j) has k non-zeros, sign(̂x(j))>sign(̂x(j)) = k, and using Claim 10, with

50

probability at least (1− δ(t)
T − δ

(t)
β)

‖
∑

E[WjW
>
j]‖ ≤ k

p‖E[(y(j) −A(t)̂x(j))(y(j) −A(t)̂x(j))
>]‖,

= O(
k3t2β
pm)‖A∗‖2.

Similarly, expanding E[W>j Wj], and using the fact that E[(y − A(t)̂x)sign(̂x)>]>E[(y −
A(t)̂x)sign(̂x)>] is positive semi-definite. Now, using Claim 8 and the fact that entries

of E[(sign(̂x(j))sign(̂x(j))>] are qi on the diagonal and zero elsewhere, where qi = O(k/m),

‖
∑

E[W>j Wj]‖ � 1
p‖E[(sign(̂x(j))(y(j) −A(t)̂x(j))

>(y(j) −A(t)̂x(j))sign(x(R)
(j))>]‖,

≤ 1
p‖E[(sign(̂x(j))sign(̂x(j))

>]‖‖y(j) −A(t)̂x(j)‖2,

≤ O(k
mp)Õ(k2t2β) = Õ(

k3t2β
mp).

Now, we are ready to apply the matrix Bernstein result. Since, m = O(n) the variance

statistic comes out to be O(
k3t2β
pm)‖A∗‖2, then as long as we choose p = Ω̃(mk2) (using the

bound on tβ), with probability at least (1− δ(t)
β − δ

(t)
T − δ

(t)
HW − δ

(t)
g)

‖̂g(t) − g(t)‖ ≤ O(k
√
k
p tβ) + ‖A∗‖

√
O(

k3t2β
pm),

= O∗(km‖A
∗‖).

where δ(t)
g = (n+m)exp(−Ω(m

√
log(n)).

Proof of Lemma 2.9. This lemma ensures that the dictionary iterates maintain the close-

ness property (Def.2.1) and satisfies the prerequisites for Lemma 2.7.

The update step for the i-th dictionary element at the s+ 1 iteration can be written

as

A(t+1)
i −A∗i = A(t)

i −A∗i − ηAĝ(t)
i ,

= A(t)
i −A∗i − ηAg(t)

i − ηA(̂g(t)
i − g(t)

i).

Here, g(t)
i is given by the following as per Lemma 2.5 with probability at least (1−δ(t)

T −

51

δ
(t)
β)

g(t)
i = qipi(A

(t)
i −A∗i) + qipi(−λ

(t)
i A(t)

i + 1
qipi

∆
(t)
i ±γ).

Substituting the expression for g(t)
i in the dictionary update step,

A(t+1)
i −A∗i = (1− ηApiqi)(A

(t)
i −A∗i)− ηApiqiλ

(t)
i A(t)

i − ηA∆
(t)
i − ηA(̂g(t)

i − g(t)
i)±γ,

where ∆
(t)
j = E[A(t)ϑ(R)sign(x∗j)]j . Therefore, the update step for the dictionary (matrix)

can be written as

A(t+1) −A∗ = (A(t) −A∗)diag((1− ηApiqi)) + ηAU− ηAV±γ − ηA(̂g(t) − g(t)), (2.25)

where, U = A(t)diag(piqiλ
(t)
i) and V = A(t)Q, with the matrix Q given by,

Qi,j = qi,jEx∗S [ϑ(R)
i sign(x∗j)|S],

and using the following intermediate result shown in Claim 7,

Ex∗S [ϑ(R)
i sign(x∗j)|S]

≤ γ
(R)
i , for i = j,

= O(pjεt), for i , j,

we have ‖Qi‖ = O(
√
mqi,jpiεt). Hence, we have

‖Q‖F ≤ O(mqi,jpiεt).

Therefore,

‖V‖ ≤ ‖A(t)Q‖ ≤ ‖A(t)‖‖Q‖F = O(mqi,jpiεt‖A∗‖) = O(k2

m log(n))‖A
∗‖.

We will now proceed to bound each term in (2.25). Starting with (A(t)−A∗)diag(1− ηApiqi),
and using the fact that pi =O(1), qi =O(k/m), and ‖A(t) −A∗‖ ≤ 2‖A∗‖, we have

‖(A(t) −A∗)diag(1− ηApiqi)‖ ≤ (1−min
i
ηApiqi)‖(A(t) −A∗)‖ ≤ 2(1−Ω(ηAk/m))‖A∗‖.

Next, since ‖A(t)
j ‖ = 1, we have λ(t)

j = |〈A(t)
j −A∗j ,A

∗
j〉| =

1
2‖A

(t)
j −A∗j‖

2, and λ
(t)
i ≤ ε

2
t /2,

52

therefore

‖U‖ = ‖A(t)diag(piqiλ
(t)
i)‖ ≤max

i
piqi

ε2
t

2 ‖A
(t) −A∗ + A∗‖ ≤ o(k/m)‖A∗‖.

Using the results derived above, and the the result derived in Lemma 2.8 which states

that with probability at least (1−δ(t)
β −δ

(t)
T −δ

(t)
HW−δ

(t)
g), ‖̂g(t)−g(t)‖ = O∗(km‖A

∗‖)) we have

‖A(t+1)−A∗‖ = ‖(A(t) −A∗)D(1−ηApiqi)‖+ ηA‖U‖+ ηA‖V‖+ ηA‖(̂g(t) − g(t))‖ ±γ,

≤ 2(1−Ω(ηA
k
m)‖A∗‖+ o(ηA

k
m)‖A∗‖+O(ηA

k2

m log(n))‖A
∗‖+ o(ηA

k
m‖A

∗‖)±γ,

≤ 2‖A∗‖.

53

2.D Appendix: Proofs of intermediate results

Claim 1 (Incoherence of A(t)). If A∗ ∈Rn×m is µ-incoherent and ‖A∗i −A(t)
i ‖ ≤ εt holds for

each i ∈ [1 . . .m], then A(t) ∈Rn×m is µt-incoherent, where µt = µ+ 2
√
nεt.

Proof of Claim 1. We start by looking at the incoherence between the columns of A∗,

for j , i,

〈A∗i ,A
∗
j〉 = 〈A∗i −A(t)

i ,A
∗
j〉+ 〈A

(t)
i ,A

∗
j〉,

= 〈A∗i −A(t)
i ,A

∗
j〉+ 〈A

(t)
i ,A

∗
j −A(t)

j 〉+ 〈A
(t)
i ,A

(t)
j 〉.

Since 〈A∗i ,A
∗
j〉 ≤

µ√
n

,

|〈A(t)
i ,A

(t)
j 〉| ≤ 〈A

∗
i ,A
∗
j〉 − 〈A

∗
i −A(t)

i ,A
∗
j〉 − 〈A

(t)
i ,A

∗
j −A(t)

j 〉,

≤ µ√
n

+ 2εt .

Claim 2 (Bound on β
(t)
j : the noise component in coefficient estimate that depends

on εt). With probability (1 − δ(t)
β), |β(t)

j | is upper-bounded by tβ = O(
√
kεt), where δ(t)

β =

2k exp(− 1
O(εt)

).

Proof of Claim 2. We have the following definition for β(t)
j from (2.11),

β
(t)
j =

∑
i,j

(〈A∗j ,A
∗
i −A(t)

i 〉+ 〈A
∗
j −A(t)

j ,A
(t)
i 〉+ 〈A

(t)
j −A∗j ,A

∗
i〉)x

∗
i .

Here, since x∗i are independent sub-Gaussian random variables, β(t)
j is a sub-Gaussian

random variable with the variance parameter evaluated as shown below

var[β(t)
j] =

∑
i,j(〈A∗j ,A

(t)
i −A∗i〉+ 〈A

(t)
j −A∗j ,A

(t)
i 〉+ 〈A

(t)
j −A∗j ,A

∗
i〉)

2 ≤ 9kε2
t .

Therefore, by Lemma 2.12

Pr[|β(t)
j | > tβ] ≤ 2exp(−

t2β
18kε2

t
).

54

Now, we need this for each β(t)
j for j ∈ supp(x∗), union bounding over k coefficients

Pr[max |β(t)
j | > tβ] ≤ δ(t)

β ,

where δ(t)
β = 2k exp(−

t2β
18kε2

t
). Choosing tβ = O(

√
kεt), we have that δ(t)

β = 2k exp(− 1
O(εt)

).

Claim 3 (Error in coefficient estimation for a general iterate (r + 1)). The error in a

general iterate r of the coefficient estimation is upper-bounded as

C
(r+1)
i1

≤ α(r+1)
i1

+ (k − 1)ηx
µt√
n

r∑̀
=1
α

(`)
max

(
1− ηx + ηx

µt√
n

)r−`
+ (k − 1)ηx

µt√
n
C

(0)
max

(
1− ηx + ηx

µt√
n

)r
.

Proof of Claim 3 . From (2.17) we have the following expression for C(r+1)
i1

C
(r+1)
i1

≤ α(r+1)
i1

+ µt√
n

r+1∑̀
=1
η

(`)
x

∑
i2,i1

C
(`−1)
i2

r+1∏
q=`

(1− η(q+1)
x).

Our aim will be to recursively substitute for C(`−1)
i1

to develop an expression for C(r+1)
i1

as a function of C0
max. To this end, we start by analyzing the iterates C(1)

i1
, C(2)

i1
, and so

on to develop an expression for C(r+1)
i1

as follows.

Expression for C(1)
i1

– Consider C(1)
i1

C
(1)
i1
≤ α(1)

i1
+ µt√

n

1∑̀
=1
ηx

∑
i2,i1

C
(`−1)
i2

1∏
q=`

(1− ηx),

= α(1)
i1

+ ηx
(
µt√
n

∑
i1,i2

C
(0)
i2

)
. (2.26)

Expression for C(2)
i1

– Next, C(2)
i1

is given by

C
(2)
i1
≤ α(2)

i1
+ ηx

µt√
n

2∑̀
=1

∑
i2,i1

C
(`−1)
i2

2∏
q=`

(1− ηx),

≤ α(2)
i1

+ ηx
µt√
n

(∑
i2,i1

C
(1)
i2

+
∑
i2,i1

C
(0)
i2

(1− ηx)
)
.

55

Further, we know from (2.26) we have

C
(1)
i2

= α(1)
i2

+ ηx
µt√
n

∑
i3,i2

C
(0)
i3
.

Therefore, since
∑
i2,i1

∑
i3,i2

=
∑

i3,i2,i1

,

C
(2)
i1
≤ α(2)

i1
+ ηx

µt√
n

(∑
i2,i1

(
α

(1)
i2

+ ηx
µt√
n

∑
i3,i2

C
(0)
i3

)
+

∑
i2,i1

C
(0)
i2

(1− ηx)
)
,

= α(2)
i1

+ ηx
µt√
n

∑
i2,i1

α
(1)
i2

+ ηx
µt√
n

(
ηx

µt√
n

∑
i3,i2,i1

C
(0)
i3

+
∑
i2,i1

C
(0)
i2

(1− ηx)
)
. (2.27)

Expression for C(3)
i1

– Next, we writing C(3)
i1

,

C
(3)
i1
≤ α(3)

i1
+ ηx

µt√
n

∑3
`=1

∑
i2,i1

C
(`−1)
i2

(1− ηx)3−`,

= α(3)
i1

+ ηx
µt√
n

∑
i2,i1

(
C

(0)
i2

(1− ηx)2 +C(1)
i2

(1− ηx) +C(2)
i2

)
,

≤ α(3)
i1

+ ηx
µt√
n

∑
i2,i1

(
C

(0)
i2

(1− ηx)2 +
(
α

(1)
i2

+ ηx
µt√
n

∑
i3,i2

C
(0)
i3

)
(1− ηx) +C(2)

i2

)
.

Here, using (2.27) we have the following expression for C(2)
i2

C
(2)
i2
≤ α(2)

i2
+ ηx

µt√
n

∑
i3,i2

α
(1)
i3

+ ηx
µt√
n

(
ηx

µt√
n

∑
i4,i3,i2

C
(0)
i4

+
∑
i3,i2

C
(0)
i3

(1− ηx)
)
.

Substituting for C(2)
i2

in the expression for C(3)
i1

, and rearranging the terms in the ex-

pression for C(3)
i1

, we have

C
(3)
i1
≤ α(3)

i1
+ ηx

µt√
n

∑
i2,i1

α
(2)
i2

+ ηx
µt√
n

(
(1− ηx)

∑
i2,i1

α
(1)
i2

+ ηx
µt√
n

∑
i3,i2,i1

α
(1)
i3

)
+ ηx

µt√
n

(
(1− ηx)2 ∑

i2,i1

C
(0)
i2

+ 2(1− ηx)(ηx
µt√
n

)
∑

i3,i2,i1

C
(0)
i3

+ (ηx
µt√
n

)2 ∑
i4,i3,i2,i1

C
(0)
i4

)
. (2.28)

Expression for C(4)
i1

– Now, consider C(4)
i1

C
(4)
i1
≤ α(4)

i1
+ ηx

µt√
n

∑4
`=1

∑
i2,i1

C
(`−1)
i2

(1− ηx)4−`,

≤ α(4)
i1

+ ηx
µt√
n

(∑
i2,i1

C
(0)
i2

(1− ηx)3 +
∑
i2,i1

C
(1)
i2

(1− ηx)2 +
∑
i2,i1

C
(2)
i2

(1− ηx)1

56

+
∑
i2,i1

C
(3)
i2

(1− ηx)0
)
.

Substituting for C(3)
i2

from (2.28), C(2)
i2

from (2.27), C(1)
i2

using (2.26), and rearranging,

C
(4)
i1
≤ α(4)

i1
+ ηx

µt√
n

[∑
i2,i1

α
(3)
i2

+
(
(1− ηx)1 ∑

i2,i1
α

(2)
i2

+ ηx
µt√
n

∑
i3,i2,i1

α
(2)
i3

)
+
(∑
i2,i1

α
(1)
i2

(1− ηx)2 + 2ηx
µt√
n

(1− ηx)
∑

i3,i2,i1

α
(1)
i3

+ (ηx
µt√
n

)2 ∑
i4,i3,i2,i1

α
(1)
i4

)]
+ ηx

µt√
n

[∑
i2,i1

C
(0)
i2

(1− ηx)3 + 3ηx
µt√
n

(1− ηx)2 ∑
i3,i2,i1

C
(0)
i3

+ 3(ηx
µt√
n

)2(1− ηx)1 ∑
i4,i3,i2,i1

C
(0)
i4

+ (ηx
µt√
n

)3 ∑
i5,i4,i3,i2,i1

C
(0)
i5

]
.

Notice that the terms have a binomial series like form. To reveal this structure,

let each α(`)
j ≤ α

(`)
max where j = i1, i2, . . . , ik . Similarly, let C(0)

j ≤ C
(0)
max for j = i1, i2, . . . , ik .

Therefore, we have

C
(4)
i1
≤ α(4)

i1
+ ηx

µt√
n

[
(k − 1)α(3)

i +α(2)
i

(
(1− ηx)1(k − 1) + ηx

µt√
n

(k − 2)
)

+α(1)
i

(
(k − 1)(1− ηx)2 + 2(k − 2)ηx

µt√
n

(1− ηx) + (k − 3)(ηx
µt√
n

)2
)]

+ ηx
µt√
n
C

(0)
i

[
(k − 1)(1− ηx)3 + 3(k − 2)ηx

µt√
n

(1− ηx)2

+ 3(k − 3)(ηx
µt√
n

)2(1− ηx)1 + (k − 4)(ηx
µt√
n

)3
]
.

Further upper-bounding the expression, we have

C
(4)
i1
≤ α(4)

i1
+ (k − 1)ηx

µt√
n

[
α

(3)
i +α(2)

i

(
(1− ηx) + ηx

µt√
n

)
+α(1)

i

(
(1− ηx)2 + 2ηx

µt√
n

(1− ηx) + (ηx
µt√
n

)2
)]

+ (k − 1)ηx
µt√
n
C

(0)
i

[
(1− ηx)3 + 3ηx

µt√
n

(1− ηx)2 + 3(ηx
µt√
n

)2(1− ηx) + (ηx
µt√
n

)3
]
.

Therefore,

C
(4)
i1
≤ α(4)

i1
+ (k − 1)ηx

µt√
n

[
α

(3)
i +α(2)

i

(
1− ηx + ηx

µt√
n

)1
+α(1)

i

(
1− ηx + ηx

µt√
n

)2
]

57

+ (k − 1)ηx
µt√
n
C

(0)
i

(
1− ηx + ηx

µt√
n

)3
. (2.29)

Expression for C(r+1)
i1

– With this, we are ready to write the general term,

C
(r+1)
i1

≤ α(r+1)
i1

+ (k − 1)ηx
µt√
n

r∑̀
=1
α

(`)
max

(
1− ηx + ηx

µt√
n

)r−`
+ (k − 1)ηx

µt√
n
C

(0)
max

(
1− ηx + ηx

µt√
n

)r
.

Claim 4 (An intermediate result for bounding the error in coefficient calculations).

With probability (1− δ(t)
T − δ

(t)
β),

R∑̀
=1
α

(`)
max

(
1− ηx + ηx

µt√
n

)R−`
≤ C(0)

i RδR + 1
ηx(1−

µt√
n

)
(ε

2
t

2 |x
∗
max|+ tβ).

Proof of Claim 4 . Using (2.18), the quantity α(`)
i is defined as

α
(`)
i = C(0)

i (1− ηx)` + (λ(t)
i |x

∗
i |+ β

(t)
i)

∑̀
s=1
ηx(1− ηx)`−s+1.

Therefore, we are interested in

R∑̀
=1
C

(0)
i (1− ηx)`

(
1− ηx+ηx

µt√
n

)R−`
+ (λ(t)

i |x
∗
i |+ β

(t)
i)

R∑̀
=1

(
1− ηx + ηx

µt√
n

)R−` ∑̀
s=1
ηx(1− ηx)`−s+1.

Consider the first term which depends on C(0)
i . Since (1−ηx) ≤ (1−ηx+ηx

µt√
n

)
, we have

C
(0)
i

R∑̀
=1

(1− ηx)`
(
1− ηx + ηx

µt√
n

)R−`
≤ C(0)

i R
(
1− ηx + ηx

µt√
n

)R
≤ C(0)

i RδR,

where δR is a small constant, and a parameter which determines the number of itera-

tions R required for the coefficient update step. Now, coming back to the quantity of

interest

R∑̀
=1
α

(`)
i

(
1− ηx + ηx

µt√
n

)R−`
≤ C(0)

i RδR

58

+ (λ(t)
i |x

∗
i |+ β

(t)
i)

R∑̀
=1

(
1− ηx + ηx

µt√
n

)R−` ∑̀
s=1
ηx(1− ηx)`−s+1.

Now, using sum of geometric series result, we have that
∑̀
s=1
ηx(1− ηx)`−s+1, and

R∑̀
=1

(
1− ηx + ηx

µt√
n

)R−`
=

1−
(

1−ηx+ηx
µt√
n

)R
ηx−ηx

µt√
n

≤ 1
ηx(1−

µt√
n

)
.

Therefore, with probability at least (1− δ(t)
β),

R∑̀
=1
α

(`)
max

(
1− ηx + ηx

µt√
n

)R−`
≤ C(0)

i RδR + 1
ηx(1−

µt√
n

)
(ε

2
t

2 |x
∗
max|+ tβ),

where λ(t)
i ≤

ε2
t

2 and |β(t)
i | = tβ with probability at least (1− δ(t)

β) using Claim 2.

Claim 5 (Bound on the noise term in the estimation of a coefficient element in the

support). With probability (1− δ(t)
β), each entry ϑ(R)

i1
of ϑ(R) is upper-bounded as

|ϑ(R)
i1
| ≤ O(tβ).

Proof of Claim 5. From (2.19) ϑ(R)
i1

is defined as

ϑ
(R)
i1

:=
R∑
r=1
ηxξ

(r)
i1

(1− ηx)R−r +γ (R)
i1
,

where γ (R)
i1

:= (1− ηx)R(x(0)
i1
− x∗i1(1−λ(t)

i1
)). Further, ξ(r)

i1
is as defined in (2.10),

ξ
(r)
i1

= β(t)
i1

+
∑
i2,i1

|〈A(t)
i1
,A(t)

i2
〉|sign(〈A(t)

i1
,A(t)

i2
〉)C(r−1)

i2
sign(x∗i2 − x(r)

i2
).

Therefore, we have the following expression for ϑ(R)
i1

ϑ
(R)
i1

=β(t)
i1

R∑
r=1
ηx(1− ηx)R−r

+
R∑
r=1
ηx

∑
i2,i1

|〈A(t)
i1
,A(t)

i2
〉|sign(〈A(t)

i1
,A(t)

i2
〉)C(r−1)

i2
sign(x∗i2 − x(r)

i2
)(1− ηx)R−r +γ (R)

i1
.

(2.30)

59

Now ϑ
(R)
i1

can be upper-bounded as

ϑ
(R)
i1
≤ β(t)

i1

R∑
r=1
ηx(1− ηx)R−r + ηx

µt√
n

R∑
r=1

∑
i2,i1

C
(r−1)
i2

(1− ηx)R−r +γ (R)
i1
,

≤ β(t)
i1

+ (k − 1)ηx
µt√
n

R∑
r=1
C

(r−1)
i2

(1− ηx)R−r +γ (R)
i1
.

Since from Claim 6 we have

C
(r−1)
i2

(1− ηx)R−r ≤ (λ(t)
max|x∗max|+ β

(t)
max)

[r−1∑
s=1
ηx(1− ηx)R−s + kcx(1− ηx)R−r

]
+ kηx

µt√
n
C

(0)
maxδR−2.

Further, since 1− (1− ηx)r−1 ≤ 1, we have that

R∑
r=1

r−1∑
s=1
ηx(1− ηx)R−s =

R∑
r=1
ηx(1− ηx)R−r+1 1−(1−ηx)r−1

ηx
≤

R∑
r=1

(1− ηx)R−r+1 ≤ 1
ηx
.

Therefore,

|ϑ(R)
i1
| ≤ |β(t)

i1
|+ (k − 1) µt√

n
(λ(t)

max|x∗max|+ |β
(t)
max|)(1 + kcx) +

(
kηx

µt√
n

)2
RC

(0)
maxδR−2 +γ (R)

i1
.

Now, since each |β(t)
i | = tβ with probability at least (1 − δ(t)

β) for the t-th iterate, and

k = O∗(
√
n

µ log(n)), therefore kcx < 1, we have that

|ϑ(R)
i1
| ≤ O(tβ).

with probability at least (1− δ(t)
β).

Claim 6 (An intermediate result for ϑ(R)
i1

calculations). For cx = µt√
n
/(1− µt√

n
), we have

C
(r−1)
i2

(1− ηx)R−r≤ (λ(t)
max|x∗max|+ β

(t)
max)

[
r−1∑
s=1
ηx(1− ηx)R−s + kcx(1− ηx)R−r

]
+ kηx

µt√
n
C

(0)
maxδR−2.

Proof of Claim 6. Here, from Claim 3 we have that for any i1,

C
(r+1)
i1

≤ α(r+1)
i1

+ kηx
µt√
n

r∑̀
=1
α

(`)
max

(
1− ηx + ηx

µt√
n

)r−`
+ kηx

µt√
n
C

(0)
max

(
1− ηx + ηx

µt√
n

)r
.

60

therefore C(r−1)
i2

is given by

C
(r−1)
i2

≤ α(r−1)
i2

+ kηx
µt√
n

r−2∑̀
=1
α

(`)
max

(
1− ηx + ηx

µt√
n

)r−`−2
+kηx

µt√
n
C

(0)
max

(
1− ηx + ηx

µt√
n

)r−2
.

Further, the term of interest C(r−1)
i2

(1− ηx)R−r can be upper-bounded by

C
(r−1)
i2

(1− ηx)R−r≤ α
(r−1)
i2

(1− ηx)R−r+(1− ηx)R−rkηx
µt√
n

r−2∑̀
=1
α

(`)
max

(
1− ηx + ηx

µt√
n

)r−`−2

+ kηx
µt√
n
C

(0)
max

(
1− ηx + ηx

µt√
n

)r−2
(1− ηx)R−r .

From the definition of α(`)
i from (2.18), α(r−1)

i2
can be written as

α
(r−1)
i2

= C(0)
max(1− ηx)r−1 + (λ(t)

max|x∗max|+ β
(t)
max)

r−1∑
s=1
ηx(1− ηx)r−s.

Therefore, we have

α
(r−1)
i2

(1− ηx)R−r = C(0)
max(1− ηx)R−1 + (λ(t)

max|x∗max|+ β
(t)
max)

r−1∑
s=1
ηx(1− ηx)R−s.

Next, to get a handle on α
(`)
max

(
1 − ηx + ηx

µt√
n

)r−`−2
, consider the following using the

definition of α(`)
i from (2.18), where η(i)

x = ηx for all i,

r∑̀
=1
α

(`)
max

(
1−ηx + ηx

µt√
n

)r−`
=

r∑̀
=1
C

(0)
max(1− ηx)`

(
1− ηx + ηx

µt√
n

)r−`
+ (λ(t)

max|x∗max|+ β
(t)
max)

r∑̀
=1

(
1− ηx + ηx

µt√
n

)r−` ∑̀
s=1
ηx(1− ηx)`−s+1,

≤
r∑̀
=1
C

(0)
max

(
1− ηx + ηx

µt√
n

)r
+ (λ(t)

max|x∗max|+ β
(t)
max)

r∑̀
=1

(
1− ηx + ηx

µt√
n

)r−`
.

Therefore,

(1− ηx)R−r
r−2∑̀
=1
α

(`)
max

(
1− ηx + ηx

µt√
n

)r−`−2
≤
r−2∑̀
=1
C

(0)
max

(
1− ηx + ηx

µt√
n

)r−2
(1− ηx)R−r

+ (λ(t)
max|x∗max|+ β

(t)
max)(1− ηx)R−r

r−2∑̀
=1

(
1− ηx + ηx

µt√
n

)r−`−2
,

≤ (R− 2)C(0)
max

(
1− ηx + ηx

µt√
n

)R−2
+ (λ(t)

max|x∗max|+ β
(t)
max) (1−ηx)R−r

ηx(1−
µt√
n

)
.

61

Therefore,

(1− ηx)R−r
r−2∑̀
=1
α

(`)
max

(
1− ηx + ηx

µt√
n

)r−`−2

≤ (r − 2)C(0)
max

(
1− ηx + ηx

µt√
n

)R−2
+ (λ(t)

max|x∗max|+ β
(t)
max) (1−ηx)R−r

ηx(1−
µt√
n

)
.

Further, since (1− ηx) ≤ (1− ηx + ηx
µt√
n

),

kηx
µt√
n
C

(0)
max

(
1− ηx + ηx

µt√
n

)r−2
(1− ηx)R−r ≤ kηx

µt√
n
C

(0)
maxδR−2.

Therefore, combining all the results we have that, for a constant cx = µt√
n
/(1− µt√

n
),

C
(r−1)
i2

(1− ηx)R−r

≤ (λ(t)
max|x∗max|+ β

(t)
max)

[
r−1∑
s=1
ηx(1− ηx)R−s + kcx(1− ηx)R−r

]
+ kηx

µt√
n
C

(0)
maxδR−2.

Claim 7 (Bound on the noise term in expected gradient vector estimate). ‖∆(t)
j ‖where

∆
(t)
j := E[A(t)ϑ(R)sign(x∗j)] is upper-bounded as,

‖∆(t)
j ‖ = O(

√
mqi,jpjεt‖A(t)‖)].

Proof of Claim 7.

∆
(t)
j = E[A(t)ϑ(R)sign(x∗j)] = ES [A(t)

S Ex∗S [ϑ(R)
S sign(x∗j)|S]]

From (2.30) we have the following definition for ϑ(R)
j

ϑ
(R)
j = β(t)

j +
R∑
r=1
ηx

∑
i,j
|〈A(t)

j ,A
(t)
i 〉|sign(〈A(t)

j ,A
(t)
i 〉)C

(r−1)
i sign(x∗i − x(r)

i)(1− ηx)R−r+γ
(R)
j ,

where β(t)
j is defined as the following (2.11)

β
(t)
j =

∑
i,j

(〈A∗j ,A
∗
i −A(t)

i 〉+ 〈A
∗
j −A(t)

j ,A
(t)
i 〉)x

∗
i +

∑
i,j〈A

(t)
j −A∗j ,A

∗
i〉x
∗
i .

62

Consider Ex∗S [ϑ(R)
S sign(x∗j)|S], where ϑ(R)

S is a vector with each element as defined in

(2.30). Therefore, the elements of the vector Ex∗S [ϑ(R)
S sign(x∗j)|S]] are given by

Ex∗S [ϑ(R)
i sign(x∗j)|S] =

Ex∗S [ϑ(R)
i sign(x∗j)|S], for i , j,

Ex∗S [ϑ(R)
j sign(x∗j)|S], for i = j.

Consider the general term of interest

Ex∗S [ϑ(R)
i sign(x∗j)|S]

≤
R∑
r=1
ηx(1− ηx)R−r Ex∗S [βisign(x∗j)|S]︸ ︷︷ ︸

♣

+ µt√
n

R∑
r=1

ηx(1− ηx)R−r
∑
s,i Ex∗S [C(r−1)

s sign(x∗s − x(r)
s)sign(x∗j)|S]︸ ︷︷ ︸

♠

+γ (R)
i .

Further, since

Ex∗S [x∗isign(x∗j)|S] =

0, for i , j,

pj , for i = j,

we have that

♣ := Ex∗S [β(t)
i sign(x∗j)|S] ≤

3pjεt , for i , j,

0 , for i = j.
(2.31)

Further, for ♠s := Ex∗S [C(r−1)
s sign(x∗s − x(r)

s)sign(x∗j)|S] we have that

♠s =

Ex∗S [C(r−1)
j (x∗j − x(r−1)

j)sign(x∗j)|S] ≤ C(r−1)
j , for s = j

0, for s , j.

In addition, for
∑
s,i ♠s we have that

∑
s,i ♠s =

C
(r−1)
j , for i , j

0, for i = j.
(2.32)

63

Therefore, using the results for ♣ and
∑
s,i
♠s, we have that Ex∗S [ϑ(R)

j sign(x∗j)|S] = γ (R)
i for

i = j, and for i , j we have

Ex∗S [ϑ(R)
i sign(x∗j)|S]

≤ 3pjεt + µt√
n

R∑
r=1

Ex∗S [C(r−1)
j sign(x∗j − x(r)

j)sign(x∗j)|S]ηx(1− ηx)R−r +γ (R)
i ,

≤ 3pjεt + µt√
n

R∑
r=1
C

(r−1)
j ηx(1− ηx)R−r +γ (R)

i . (2.33)

Here, from Claim 6, for cx = µt√
n
/(1− µt√

n
) we have

C
(r−1)
j (1− ηx)R−r

≤ (λ(t)
max|x∗max|+ β

(t)
max)

[
r−1∑
s=1
ηx(1− ηx)R−s + kcx(1− ηx)R−r

]
+ kηx

µt√
n
C

(0)
maxδR−2.

Further, due to our assumptions on sparsity, kcx ≤ 1; in addition by Claim 2, and with

probability at least (1− δ(t)
β) we have |β(t)

max| ≤ tβ , substituting,

R∑
r=1
C

(r−1)
j ηx(1− ηx)R−r

≤ (λ(t)
max|x∗max|+ β

(t)
max)

[
R∑
r=1
ηx

r−1∑
s=1
ηx(1− ηx)R−s + kcx

R∑
r=1
ηx(1− ηx)R−r

]
,

≤ (λ(t)
max|x∗max|+ tβ)(1 + kcx),

= O(tβ),

with probability at least (1− δ(t)
β). Combining results from (2.31), (2.32) and substitut-

ing for the terms in (2.33) using the analysis above,

Ex∗S [ϑ(R)
i sign(x∗j)|S]

≤ γ
(R)
i , for i = j,

≤ 3pjεt + µ√
n
tβ +γ (R)

i = O(pjεt), for i , j.

Note that since γ (R)
i := (1 − ηx)R(x(0)

i − x∗i (1 − λ
(t)
i)) can be made small by choice of R.

Also, since Pr[i, j ∈ S] = qi,j , we have

‖∆(t)
j ‖ = ‖ES [A(t)

S Ex∗S [ϑ(R)
S sign(x∗j)|S]]‖,

64

≤ O(
√
mqi,jpjεt‖A(t)‖).

Claim 8 (An intermediate result for concentration results). With probability (1−δ(t)
β −

δ
(t)
T − δ

(t)
HW) ‖y−A(t)̂x‖ is upper-bounded by Õ(ktβ) .

Proof of Claim 8. First, using Lemma 2.4 we have

x̂i1 := x(R)
i1

= x∗i1(1−λ(t)
i1

) +ϑ(R)
i1
.

Therefore, the vector x̂S , for S ∈ supp(x∗) can be written as

x̂S := x(R)
S = (I−Λ(t)

S)x∗S +ϑ(R)
S , (2.34)

where x̂ has the correct signed-support with probability at least (1−δT) using Lemma 2.2.

Using this result, we can write ‖y−A(t)̂x‖ as

‖y−A(t)̂x‖ = ‖A∗Sx∗S −A(t)
S (I−Λ(t)

S)x∗S −A(t)
S ϑ

(R)
S ‖.

Now, since Λ
(t)
ii ≤

ε2
t

2 we have

‖y−A(t)̂x‖ ≤ ‖A∗Sx∗S − (1− ε
2
t

2)A(t)
S x∗S −A(t)

S ϑ
(R)
S ‖,

= ‖ ((1− ε
2
t

2)(A∗S −A(t)
S) + ε2

t
2 A∗S)︸ ︷︷ ︸

♣

x∗S −A(t)
S ϑ

(R)
S︸ ︷︷ ︸
♠

‖.

With x∗S being independent and sub-Gaussian, using Lemma 2.13, which is a result

based on the Hanson-Wright result (Hanson and Wright, 1971) for sub-Gaussian ran-

dom variables, and since ‖A(t)
S −A∗S‖ ≤ ‖A

(t)
S −A∗S‖F ≤

√
kεt, we have that with probability

at least (1− δ(t)
HW)

‖♣x∗S‖ = ‖((1− ε
2
t

2)(A∗S −A(t)
S) + ε2

t
2 A∗S)x∗S‖ ≤ Õ(‖(1− ε

2
t

2)(A∗S −A(t)
S) + ε2

t
2 A∗S‖F),

where δ(t)
HW = exp(− 1

O(εt)
).

Now, consider the ‖♣‖F , since ‖A(t)
S −A∗S‖F ≤

√
kεt

‖♣‖F := ‖(1− ε
2
t

2)(A∗S −A(t)
S) + ε2

t
2 A∗S‖F ≤ (1− ε

2
t

2)‖(A∗S −A(t)
S)‖F + ε2

t
2 ‖A

∗
S‖F ,

65

≤
√
k(1− ε

2
t

2)εt + ε2
t

2 ‖A
∗
S‖F .

Consider the ‖♠‖ term. Using Claim 5, each ϑ(R)
j is bounded by O(tβ). with probability

at least (1− δ(t)
β) Therefore,

‖♠‖ = ‖A(t)
S ϑ

(R)
S ‖ ≤ ‖A

(t)
S ‖‖ϑ

(R)
S ‖ = ‖A(t)

S ‖
√
kO(tβ).

Again, since ‖A(t)
S −A∗S‖ ≤ ‖A

(t)
S −A∗S‖F ≤

√
kεt,

‖A(t)
S ‖ ≤ ‖A

(t)
S −A∗S + A∗S‖ ≤ ‖A

(t)
S −A∗S‖+ ‖A∗S‖ ≤

√
kεt + 2.

Finally, combining all the results and using the fact that ‖A∗S‖F ≤
√
k‖A∗S‖ ≤ 2

√
k, ,

‖y−A(t)̂x‖ = Õ(
√
k(1− ε

2
t

2)εt + ε2
t

√
k) + ‖A(t)

S ‖
√
kO(tβ),

= Õ(ktβ).

Claim 9 (Bound on variance parameter for concentration of gradient vector). For

z := (y−A(t)̂x)sign(̂xi)|i ∈ S the variance parameter E[‖z‖2] is bounded as E[‖z‖2] = O(kε2
t)+

O(kt2β) with probability at least (1− δ(t)
β − δ

(t)
T).

Proof of Claim 9. For the variance E[‖z‖2], we focus on the following,

E[‖z‖2] = E[‖(y−A(t)̂x)sign(̂xi)‖2|i ∈ S].

Here, x̂S is given by

x̂S = (I−Λ(t)
S)x∗S +ϑ(R)

S .

Therefore, E[‖z‖2] can we written as

E[‖(y−A(t)̂x)sign(̂xi)‖2|i ∈ S]

= E[‖(y−A(t)
S (I−Λ(t)

S)x∗S −A(t)
S ϑ

(R)
S)sign(̂xi)‖2|i ∈ S],

≤ E[‖(A∗S −A(t)
S (I−Λ(t)

S))x∗S‖
2|i ∈ S]︸ ︷︷ ︸

♥

+E[‖A(t)
S ϑ

(R)
S sign(̂xi)‖2|i ∈ S]︸ ︷︷ ︸

♦

. (2.35)

66

We will now consider each term in (2.35) separately. We start with ♥. Since x∗Ss are con-

ditionally independent of S, E[x∗Sx∗
>

S] = I. Therefore, we can simplify this expression

as

♥ := E[‖(A∗S −A(t)
S (I−Λ(t)

S))x∗S‖
2|i ∈ S] = E[‖A∗S −A(t)

S (I−Λ(t)
S)‖2F |i ∈ S].

Rearranging the terms we have the following for ♥,

♥ = E[‖A∗S −A(t)
S (I−Λ(t)

S)‖2F |i ∈ S] = E[‖A∗SΛ
(t)
S + (A∗S −A(t)

S)(I−Λ(t)
S)‖2F |i ∈ S].

Therefore, ♥ can be upper-bounded as

♥ ≤ E[‖A∗SΛ
(t)
S ‖

2
F |i ∈ S]︸ ︷︷ ︸

♥1

+E[‖(A∗S −A(t)
S)(I−Λ(t)

S)‖2F |i ∈ S]︸ ︷︷ ︸
♥2

+ 2E[‖A∗SΛ
(t)
S ‖F‖(A

∗
S −A(t)

S)(I−Λ(t)
S)‖F |i ∈ S]︸ ︷︷ ︸

♥3

. (2.36)

For ♥1, since ‖A(t)
S ‖ ≤

√
kεt + 2, we have

♥1 := E[‖A∗SΛ
(t)
S ‖

2
F |i ∈ S] ≤ E[‖A∗S‖‖Λ

(t)
S ‖

2
F |i ∈ S] ≤ ‖A∗S‖

∑
j∈S(λ(t)

j)2 ≤ k(
√
kεt + 2)ε

4
t

4 .

Next, since (1−λ(t)
j) ≤ 1, we have the following bound for ♥2

♥2 := E[‖(A∗S −A(t)
S)(I−Λ(t)

S)‖2F |i ∈ S] ≤ E[‖A∗S −A(t)
S ‖

2
F |i ∈ S] ≤ ‖A∗S −A(t)

S ‖
2
F ≤ kε

2
t .

Further, ♥3 can be upper-bounded by using bounds for ♥1 and ♥2. Combining the

results of upper-bounding ♥1, ♥2, and ♥3 we have the following for (2.36)

♥ ≤ E[‖(A∗S −A(t)
S (I−Λ(t)

S))x∗S‖
2|i ∈ S] = O(kε2

t).

Next, by Claim 5, ϑ(R)
j is upper-bounded as |ϑ(R)

j | ≤ O(tβ). with probability (1−δ(t)
β).

Therefore, the term ♦, the second term of (2.35), can be bounded as

♦ ≤ ‖A(t)
S ϑ

(R)
S sign(̂xi)‖2 ≤ (

√
kεt + 2)2kO(tβ)2 = O(kt2β).

67

Finally, combining all the results, the term of interest in (2.35) has the following

form

E[‖(y−A(t)̂x)sign(̂xi)‖2|i ∈ S] = O(kε2
t) +O(kt2β).

Claim 10 (Bound on variance parameter for concentration of gradient matrix). With

probability (1−δ(t)
T −δ

(t)
β), the variance parameter ‖E[(y−A(t)̂x)(y−Ax̂)>]‖ is upper-bounded

by O(
k2t2β
m)‖A∗‖2.

Proof of Claim 10. Let Fx∗ be the event that sign(x∗) = sign(̂x), and let 1Fx∗ denote the

indicator function corresponding to this event. As we show in Lemma 2.2, this event

occurs with probability at least (1− δ(t)
β − δ

(t)
T), therefore,

E[(y−A(t)̂x)(y−A(t)̂x)>]

= E[(y−A(t)̂x)(y−A(t)̂x)>1Fx∗] + E[(y−A(t)̂x)(y−A(t)̂x)>1F̄x∗],

= E[(y−A(t)̂x)(y−A(t)̂x)>1Fx∗]±γ.

Here, γ is small. Under the event Fx∗ , x̂ has the correct signed-support. Again, since

1Fx∗ = 1−1F̄x∗
,

E[(y−A(t)̂x)(y−A(t)̂x)>] = E[(y−A(t)̂x)(y−A(t)̂x)>(1−1F̄x∗)]±γ,

= E[(y−A(t)̂x)(y−A(t)̂x)>]±γ.

Now, using Lemma 2.4 with probability at least (1−δ(t)
T −δ

(t)
β), x̂S admits the following

expression

x̂S := x(R)
S = (I−Λ(t)

S)x∗S +ϑ(R)
S .

Therefore we have

y−A(t)̂x = (A∗S −A(t)
S (I−Λ(t)

S))x∗S −A(t)
S ϑ

(R)
S .

68

Using the expression above E[(y−A(t)̂x)(y−A(t)̂x)>] can be written as

E[(y−A(t)̂x)(y−A(t)̂x)>]

= E[((A∗S −A(t)
S (I−Λ(t)

S))x∗S −A(t)
S ϑ

(R)
S)((A∗S −A(t)

S (I−Λ(t)
S))x∗S −A(t)

S ϑ
(R)
S)>].

Sub-conditioning, we have

E[(y−A(t)̂x)(y−A(t)̂x)>]

=ES [(A∗S −A(t)
S (I−Λ(t)

S))Ex∗S [x∗Sx∗
>

S |S](A∗
>

S − (I−Λ(t)
S)A(t)>

S)]

−ES [A(t)
S Ex∗S [ϑ(R)

S x∗
>

S |S](A∗
>

S − (I−Λ(t)
S)A(t)>

S)]

−ES [(A∗S −A(t)
S (I−Λ(t)

S))Ex∗S [x∗S(ϑ(R)
S)>|S]A(t)>

S]

+ ES [A(t)
S Ex∗S [ϑ(R)

S (ϑ(R)
S)>|S]A(t)>

S].

Now, since Ex∗S [x∗Sx∗
>

S |S] = I,

‖E[(y−A(t)̂x)(y−A(t)̂x)>]‖ ≤ ‖ES [(A∗S −A(t)
S (I−Λ(t)

S))(A∗
>

S − (I−Λ(t)
S)A(t)>

S)]‖︸ ︷︷ ︸
♣

+ ‖ES [A(t)
S Ex∗S [ϑ(R)

S x∗
>

S |S](A∗
>

S − (I−Λ(t)
S)A(t)>

S)]‖︸ ︷︷ ︸
♠

+ ‖ES [(A∗S −A(t)
S (I−Λ(t)

S))Ex∗S [x∗S(ϑ(R)
S)>|S]A(t)>

S]‖︸ ︷︷ ︸
♥

+ ‖ES [A(t)
S Ex∗S [ϑ(R)

S (ϑ(R)
S)>|S]A(t)>

S]‖︸ ︷︷ ︸
♦

. (2.37)

Let’s start with the first term (♣) of (2.37), which can be written as

♣ :≤ ‖ES [A∗SA∗
>

S]‖︸ ︷︷ ︸
♣1

+‖ES [A∗S(I−Λ(t)
S)A(t)>

S]‖︸ ︷︷ ︸
♣2

+ ‖ES [A(t)
S (I−Λ(t)

S)A∗
>

S]‖︸ ︷︷ ︸
♣3

+ ‖ES [A(t)
S (I−Λ(t)

S)2A(t)>

S]‖︸ ︷︷ ︸
♣4

. (2.38)

69

Now consider each term of equation (2.38). First, since

ES [A∗SA∗
>

S] = ES [
∑
i,j∈S

A∗iA
∗>
j 1i,j∈S] =

m∑
i,j=1

A∗iA
∗>
i ES [1i,j∈S],

and ES [1i,j∈S] = O(k
2

m2), we can upper-bound ♣1 := ‖ES [A∗SA∗
>

S]‖ as

♣1 := ‖ES [A∗SA∗
>

S]‖ = O(k
2

m2)‖A∗1m×mA∗
>
‖ = O(k

2

m)‖A∗‖2,

where 1m×m denotes an m × m matrix of ones. Now, we turn to ♣2 := ‖ES [A∗S(I −
Λ

(t)
S)A(t)>

S]‖ in (2.38), which can be simplified as

♣2 ≤ ‖
m∑

i,j=1
A∗iA

(t)>

j ES [1i,j∈S]‖ ≤ O(k
2

m)‖A∗‖‖A(t)‖.

Further, since A(t) is (εt ,2)-close to A∗, we have that ‖A(t)‖ ≤ ‖A(t) −A∗‖+ ‖A∗‖ ≤ 3‖A∗‖,
therefore

♣2 := ‖ES [A∗S(I−Λ(t)
S)A(t)>

S]‖ = O(k
2

m)‖A∗‖2.

Similarly, ♣3 (2.38) is also O(k
2

m)‖A∗‖2. Next, we consider ♣4 := ‖ES [A(t)
S (I−Λ(t)

S)2A(t)>

S]‖
in (2.38) which can also be bounded similarly as

♣4 = O(k
2

m)‖A∗‖2.

Therefore, we have the following for ♣ in (2.37)

♣ := ES [(A∗S −A(t)
S (I−Λ(t)

S))(A∗
>

S − (I−Λ(t)
S)A(t)>

S)] = O(k
2

m)‖A∗‖2. (2.39)

Consider ♠ in (2.37). Letting M = Ex∗S [ϑ(R)
S x∗

>

S |S], and using the analysis similar to that

shown in 7, we have that elements of M ∈Rk×k are given by

Mi,j = Ex∗S [ϑ(R)
i x∗j |S]

≤ O(γ (R)
i), for i = j,

= O(εt), for i , j.

70

We have the following,

♠ := ES [A(t)
S Ex∗S [ϑ(R)

S x∗
>

S |S](A∗
>

S − (I−Λ(t)
S)A(t)>

S)] = ES [A(t)
S M(A∗

>

S − (I−Λ(t)
S)A(t)>

S)].

Therefore, since ES [1i,j∈S |S] = O(k
2

m2), and ‖1m×m‖ =m,

♠ := ‖ES [A(t)
S M(A∗

>

S − (I−Λ(t)
S)A(t)>

S)]‖

= ‖
m∑

i,j=1
Mi,jA

(t)
i (A∗

>

j − (1−λ(t)
j)A(t)>

j)ES [1i,j∈S |S]‖,

= O(εt)‖
m∑

i,j=1
A(t)
i (A∗

>

j − (1−λ(t)
j)A(t)>

j)ES [1i,j∈S |S]‖,

= O(εt)O(k
2

m2)(‖A(t)1m×mA∗
>
‖+ ‖A(t)1m×mA(t)>‖),

= O(εt)O(k
2

m)‖A∗‖2.

Therefore,

♠ := ‖ES [A(t)
S M(A∗

>

S − (I−Λ(t)
S)A(t)>

S)]‖= O(k
2

m)εt‖A∗‖2.

Similarly, ♥ in (2.37) is also bounded as ♠. Next, we consider ♦ in (2.37). In this

case, letting Ex∗S [ϑ(R)
S (ϑ(R)

S)>|S] = N, where N ∈Rk×k is a matrix whose each entry Ni,j ≤
|ϑ(R)
i ||ϑ

(R)
j |. Further, by Claim 5, each element ϑ(R)

j is upper-bounded as

|ϑ(R)
j | ≤ O(tβ).

with probability at least (1− δ(t)
β). Therefore,

♦ = ‖
m∑

i,j=1
Ni,jA

(t)
i A(t)>

j ES [1i,j∈S |S]‖ = max
i,j
|ϑ(R)
i ||ϑ

(R)
j |O(k

2

m2)‖
m∑

i,j=1
A(t)
i A(t)>

j ‖.

Again, using the result on |ϑ(R)
i1
|, we have

♦ := ‖ES [A(t)
S NA(t)>

S]‖ =m max
i,j
|ϑ(R)
i ||ϑ

(R)
j |O(k

2

m2)‖A(t)‖‖A(t)‖= O(
k2t2β
m)‖A∗‖2.

Combining all the results for ♣, ♠, ♥ and ♦, we have,

‖E[(y−A(t)̂x)(y−A(t)̂x)>]‖

71

= O(k
2

m)‖A∗‖2 +O(k
2

m)εt‖A∗‖2 +O(k
2

m)εt‖A∗‖2 +O(
k2t2β
m)‖A∗‖2,

= O(
k2t2β
m)‖A∗‖2.

2.E Additional Experimental Results

We now present some additional results to highlight the features of NOODL. Specif-

ically, we compare the performance of NOODL (for both dictionary and coefficient

recovery) with the state-of-the-art provable techniques for DL presented in Arora et al.

(2015) (when the coefficients are recovered via a sparse approximation step after DL)2.

We also compare the performance of NOODL with the popular online DL algorithm

in Mairal et al. (2009), denoted by Mairal ‘09. Here, the authors show that alternat-

ing between a `1-based sparse approximation and dictionary update based on block

co-ordinate descent converges to a stationary point, as compared to the true factors in

case of NOODL.

Data Generation: We generate a (n = 1000) × (m = 1500) matrix, with entries drawn

fromN (0,1), and normalize its columns to form the ground-truth dictionary A∗. Next,

we perturb A∗ with random Gaussian noise, such that the unit-norm columns of the

resulting matrix, A(0) are 2/ log(n) away from A∗, in `2-norm sense, i.e., ε0 = 2/ log(n);

this satisfies the initialization assumptions in A.4. At each iteration, we generate

p = 5000 samples Y ∈ R
1000×5000 as Y = A∗X∗, where X∗ ∈ R

m×p has at most k =

10, 20, 50, and 100, entries per column, drawn from the Radamacher distribution.

We report the results in terms of relative Frobenius error for all the experiments, i.e.,

for a recovered matrix M̂, we report ‖M̂−M∗‖F/‖M∗‖F. To form the coefficient estimate

for Mairal ‘09 via Lasso (Tibshirani, 1996) we use the FISTA (Beck and Teboulle, 2009)

algorithm by searching across 10 values of the regularization parameter at each itera-

tion. Note that, although our phase transition analysis for NOODL shows that p = m

suffices, we use p = 5000 in our convergence analysis for a fair comparison with related

techniques.

2The associated code is made available at https://github.com/srambhatla/NOODL; see Chapter 2 for
details.

https://github.com/srambhatla/NOODL

72

2.E.1 Coefficient Recovery

Table 2.E.1 summarizes the results of the convergence analysis shown in Fig. 2.2. Here,

we compare the dictionary and coefficient recovery performance of NOODL with other

techniques. For Arora15(‘‘biased’’) and Arora15(‘‘unbiased’’), we report the

error in recovered coefficients after the HT step (XHT) and the best error via sparse

approximation using Lasso3 Tibshirani (1996), denoted as XLasso, by scanning over 50

values of regularization parameter. For Mairal ‘09 at each iteration of the algorithm we

scan across 10 values4 of the regularization parameter, to recover the best coefficient

estimate using Lasso (via FISTA), denoted as XLasso.

We observe that NOODL exhibits significantly superior performance across the

board. Also, we observe that using sparse approximation after dictionary recovery,

when the dictionary suffers from a bias, leads to poor coefficient recovery5, as is the

case with Arora15(‘‘biased’’), Arora15(‘‘unbiased’’), and Mairal ‘09. This high-

lights the applicability of our approach in real-world machine learning tasks where

coefficient recovery is of interest. In fact, it is a testament to the fact that, even in cases

where dictionary recovery is the primary goal, making progress on the coefficients is

also important for dictionary recovery.

In addition, the coefficient estimation step is also online in case of NOODL, while

for the state-of-the-art provable techniques (which only recover the dictionary and in-

cur bias in estimation) need additional sparse approximation step for coefficient recov-

ery. Moreover, these sparse approximation techniques (such as Lasso) are expensive to

use in practice, and need significant tuning.

2.E.2 Computational Time

In addition to these convergence results, we also report the computational time taken

by each of these algorithms in Table 2.E.1. The results shown here were compiled using

3We use the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009),
which is among the most efficient algorithms for solving the `1-regularized problems. Note that, in our
experiments we fix the step-size for FISTA as 1/L, where L is the estimate of the Lipschitz constant (since
A is not known exactly).

4Note that, although scanning across 50 values of the regularization parameter for this case would
have led to better coefficient estimates and dictionary recovery, we choose 10 values for this case since
it is very expensive to scan across 50 of regularization parameter at each step. This also highlights why
Mairal ‘09 may be prohibitive for large scale applications.

5When the dictionary is not known exactly, the guarantees may exist on coefficient recovery only in
terms of closeness in `2-norm sense, due to the error-in-variables (EIV) model for the dictionary (Fuller,
2009; Wainwright, 2009).

73
Table 2.E.1: Final error in recovery of the factors by various techniques and the computation
time taken per iteration (in seconds) corresponding to Fig. 2.2 across techniques. We report
the coefficient estimate after the HT step (in Arora et al. (2015)) as XHT. For the techniques
presented in Arora et al. (2015), we scan across 50 values of the regularization parameter for
coefficient estimation using Lasso after learning the dictionary (A), and report the optimal
estimation error for the coefficients (XLasso), while for Mairal ‘09, at each step the coefficients
estimate is chosen by scanning across 10 values of the regularization parameters. For k = 100,
the algorithms of Arora et al. (2015) do not converge (shown as N/A).

Technique
Recovered Factor

and Timing
k = 10 k = 20 k = 50 k = 100

NOODL

A 9.44× 10−11 8.82× 10−11 9.70× 10−11 7.33× 10−11

X 1.14× 10−11 1.76× 10−11 3.58× 10−11 4.74× 10−11

Avg. Time/iteration 46.500 sec 53.303 sec 64.800 sec 96.195 sec

Arora15

(‘‘biased’’)

A 0.013 0.031 0.137 N/A
XHT 0.077 0.120 0.308 N/A

XLasso 0.006 0.018 0.097 N/A
Avg. Time/iteration
(Accounting for one

Lasso update)
39.390 sec 39.371 sec 39.434 sec 40.063 sec

Avg. Time/iteration
(Overall Lasso search)

389.368 sec 388.886 sec 389.566 sec 395.137 sec

Arora15

(‘‘unbiased’’)

A 0.011 0.027 0.148 N/A
XHT 0.078 0.122 0.371 N/A

XLasso 0.005 0.015 0.0921 N/A
Avg. Time/iteration
(Accounting for one

Lasso update)
567.830 sec 597.543 sec 592.081 sec 686.694 sec

Avg. Time/iteration
(Overall Lasso search)

917.809 sec 947.059 sec 942.212 sec 1041.767 sec

Mairal ‘09

A 0.009 0.015 0.021 0.037
XLasso 0.183 0.209 0.275 0.353

Avg. Time/iteration
(Accounting for one

Lasso update)
39.110 sec 39.077 sec 39.163 sec 39.672 sec

Avg. Time/iteration
(Overall Lasso search)

388.978 sec 388.614 sec 389.512 sec 394.566 sec

5 cores and 200GB RAM of Intel Xeon E5− 2670 Sandy Bridge and Haswell E5-2680v3

processors.

The primary takeaway is that although NOODL takes marginally more time per

iteration as compared to other methods when accounting for just one Lasso update

step for the coefficients, it (a) is in fact faster per iteration since it does not involve

any computationally expensive tuning procedure to scan across regularization param-

eters; owing to its geometric convergence property (b) achieves orders of magnitude

superior error at convergence, and as a result, (c) overall takes significantly less time

to reach such a solution. Further, NOODL’s computation time can be further reduced

74

via implementations using the neural architecture illustrated in Section 2.5.

Note that since the coefficient estimates using just the HT step at every step may not

yield a usable result for Arora15(‘‘unbiased’’) and Arora15(‘‘biased’’) as shown

in Table 2.E.1, in practice, one has to employ an additional `1-based sparse recovery

step. Therefore, for a fair comparison, we account for running sparse recovery step(s)

using Lasso (via the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck

and Teboulle, 2009)) at every iteration of the algorithms Arora15(‘‘biased’’) and

Arora15(‘‘unbiased’’).

For our technique, we report the average computation time taken per iteration.

However, for the rest of the techniques, the coefficient recovery using Lasso (via FISTA)

involves a search over various values of the regularization parameters (10 values for

this current exposition). As a result, we analyze the computation time per iteration

via two metrics. First of these is the average computation time taken per iteration by

accounting for the average time take per Lasso update (denoted as “Accounting for one

Lasso update”), and the second is the average time taken per iteration to scan over all

(10) values of the regularization parameter (denoted as “Overall Lasso search”) .

As shown in Table 2.E.1, in comparison to NOODL the techniques described in

Arora et al. (2015) still incur a large error at convergence, while the popular online DL

algorithm of Mairal et al. (2009) exhibits very slow convergence rate. Combined with

the convergence results shown in Fig. 2.2, we observe that due to NOODL’s superior

convergence properties, it is overall faster and also geometrically converges to the true

factors. This again highlights the applicability of NOODL in practical applications,

while guaranteeing convergence to the true factors.

2.F Appendix: Standard Results

Definition 2.6 (sub-Gaussian Random variable). Let x ∼ subGaussian(σ2). Then, for

any t > 0, it holds that

Pr[|x| > t] ≤ 2exp
(
t2

2σ2

)
.

75

2.F.1 Concentration results

Lemma 2.10 (Matrix Bernstein (Tropp, 2015)). Consider a finite sequence Wk ∈ Rn×m

of independent, random, centered matrices with dimension n. Assume that each ran-

dom matrix satisfies E[Wk] = 0 and ‖Wk‖ ≤ R almost surely. Then, for all t ≥ 0,

Pr
{
‖
∑
k

Wk‖ ≥ t
}
≤ (n+m)exp

(
−t2/2
σ2+Rt/3

)
,

where σ2 := max{‖
∑
k

E[WkW>k]‖,‖
∑
k

E[W>k Wk]‖}.

Furthermore,

E[‖
∑
k

Wk‖] ≤
√

2σ2 log(n+m) + 1
3R log(n+m).

Lemma 2.11 (Vector Bernstein (Tropp, 2015)). Consider a finite sequence wk ∈ Rn of

independent, random, zero mean vectors with dimension n. Assume that each random

vector satisfies E[wk] = 0 and ‖wk‖ ≤ R almost surely. Then, for all t ≥ 0,

Pr
{
‖
∑
k

wk‖ ≥ t
}
≤ 2nexp

(
−t2/2
σ2+Rt/3

)
,

where σ2 := ‖
∑
k

E[‖wk‖2]‖. Furthermore,

E[‖
∑
k

wk‖] ≤
√

2σ2 log(2n) + 1
3R log(2n).

Lemma 2.12. Chernoff Bound for sub-Gaussian Random Variables Let w be an in-

dependent sub-Gaussian random variables with variance parameter σ2, then for any

t > 0 it holds that

Pr[|w| > t] ≤ 2exp(− t2

2σ2).

Lemma 2.13 (Sub-Gaussian concentration (Rudelson and Vershynin, 2013)). Let

M ∈ Rn×m be a fixed matrix. Let w be a vector of independent, sub-Gaussian random

variables with mean zero and variance one. Then, for an absolute constant c,

Pr[‖Mx‖2 − ‖M‖F > t] ≤ exp(− ct2

‖M‖2).

76

2.F.2 Results from (Arora et al., 2015)

Lemma 2.14 ((Arora et al., 2015) Lemma 45). Suppose that the distribution of Z satis-

fies Pr[‖Z‖ ≥ L(log(1/ρ))C] ≤ ρ] for some constant C > 0, then

1. If p = nO(1) then ‖Z(j)‖ ≤ Õ(L) holds for each j with probability at least(1−ρ) and,

2. ‖E[Z1‖Z‖≥Ω̃(L)]‖ = n−ω(1).

In particular, if 1
p

∑p
j=1 Z(j)(1 − 1‖Z‖≥Ω̃(L)) is concentrated with probability (1 − ρ), then

so is 1
p

∑p
j=1 Z(j).

Lemma 2.15 (Theorem 40 (Arora et al., 2015)). Suppose random vector g(t) is a (ρ ,ρ
+
,ζt)-

correlated with high probability with z∗ for t ∈ [T] where T ≤ poly(n), and ηA satisfies

0 < ηA ≤ 2ρ
+
, then for any t ∈ [T],

E[‖z(t+1) − z∗‖2] ≤ (1− 2ρ ηA)‖z(t) − z∗‖+ 2ηAζt .

In particular, if ‖z(0) − z∗‖ ≤ ε0 and ζt ≤ (ρ)o((1 − 2ρ η)t)ε2
0 + ζ, where ζ = maxt∈[T]ζt,

then the updates converge to z∗ geometrically with systematic error ζ/ρ in the sense

that

E[‖z(t+1) − z∗‖2] ≤ (1− 2ρ ηA)tε2
0 + ζ/ρ .

Chapter 3

Provable Structured Tensor

Factorization via Dictionary

Learning

3.1 Overview

We consider the problem of factorizing a structured tensor into its constituent Canoni-

cal Polyadic (CP) factors. This decomposition, which can be viewed as a generalization

of singular value decomposition (SVD) for tensors, reveals how the tensor dimensions

(features) interact with each other. However, since these factors are a priori unknown,

the corresponding optimization problems are inherently non-convex. The existing

guaranteed algorithms which handle this non-convexity only apply to cases where all

factors have the same structure, and also incur an irreducible error. To address this

gap, we develop a provable algorithm for structured tensor factorization, wherein one

of the factors obeys some incoherence conditions, and the others are sparse. Motivated

by recent dictionary learning results, we show that, under some relatively mild con-

ditions on initialization, rank, and sparsity, our algorithm recovers the factors exactly

(up to scaling and permutation) at a linear rate. Moreover, its scalability and ability to

learn on-the-fly makes it suitable for real-world applications.

77

78

3.2 Introduction

Canonical Polyadic (CP) /PARAFAC decomposition aims to express a tensor as a sum

of rank-1 tensors, each of which is formed by the outer-product of columns of con-

stituent factors. Specifically, for decomposing a 3-way tensor, the task entails factoriz-

ing a given tensor Z ∈Rn×J×K , as

Z =
∑m
i=1 A∗i ◦B∗i ◦C∗i = [[A∗,B∗,C∗]], (3.1)

where A∗i , B∗i and C∗i are columns of factors A∗, B∗, and C∗, respectively, and are a priori

unknown; See Kolda and Bader (2009) and references therein for details.

In this work, we develop a provable algorithm for factorization of tensor(s) Z(t)

(arriving, or made available for sequential processing, at an instance t), assumed to be

generated as (3.1), wherein the factor A∗ is incoherent and the factors B∗(t) and C∗(t) are

sparse.

n

K

J

Z =
m∑
i=1

A∗i

B∗i

C∗i

Figure 3.1: The structured tensor Z ∈ Rn×J×K considered in this work. The tensor has a few
mode-1 fibers which are dense.

These structural assumptions result in a tensor that only has a few non-zero fibers, as

in Fig.3.1, and may arise in applications where users only interact with specific items,

i.e., the user – item interactions are sparse. For instance, in web analytics for scrolling

pattern analysis across users and sites (Mueller and Lockerd, 2001), analysis of pa-

tient responses to different probe locations (Deburchgraeve et al., 2009; Becker et al.,

2015), electro-dermal responses of users to different audio-visual stimuli or activities

((Grundlehner et al., 2009; Silveira et al., 2013), and so on. Overall, the factorization in

(3.1) reveals similarity (clustering) between different users, items, their corresponding

temporal signatures, and insights into how these dimensions interact with each other.

A popular choice for the factorization task shown in (3.1) is via the alternating

79

least squares (ALS) algorithm; see Kolda and Bader (2009). Here, to steer the algo-

rithm towards specific solutions (such as `1 loss for sparsity) one can add appropriate

regularization terms to the least-square objective (Martı́nez-Montes et al., 2008; Allen,

2012; Papalexakis et al., 2013). However, this approach suffers from three major issues

– a) it is difficult to characterize the nature of the solution, i.e., there may not be any re-

covery or (limited) convergence guarantees, b) one may need to solve an implicit model

selection problem (e.g., choose the tensor rank m, which may not be known a priori),

and c) adding regularization may be computationally expensive, which in addition,

may not be scalable.

With an aim to develop guaranteed algorithms for tensor factorization, recent works

– based on tensor power method (Anandkumar et al., 2015), convex relaxations (Tang

and Shah, 2015), sum-of-squares formulations (Barak et al., 2015; Ma et al., 2016;

Schramm and Steurer, 2017), and variants of ALS algorithm (Sharan and Valiant, 2017)

– have focused on recovery of tensor factors based on some notion of incoherence of in-

dividual factor matrices, but cannot tackle the case when the constituent factors do not

have a shared structure, i.e. they need that all factors are sparse, incoherent, or both;

see also Sun et al. (2017). Furthermore, these algorithms may be computationally ex-

pensive in practice, not amenable for online (streaming) tensor data factorization, in

addition to incurring bias in estimation. Consequently, there is a need to develop fast,

scalable provable algorithms for (exact) factorization of structured tensors arriving

(or processed) in a streaming fashion (online), generated by interactions of heteroge-

neously structured factors, for emerging applications in neurophysiology, text mining,

community detection, and other signal/image processing tasks (see Sidiropoulos et al.

(2017) and references therein).

3.2.1 Overview of the algorithm

The structured tensor of interest (Fig. 3.1) contains only a few non-zero fibers. With

incoherence conditions on the factor A∗ and sparsity assumptions on B∗(t) and C∗(t), we

model these fibers as being generated by the dictionary learning model, where the task

is to learn an a priori unknown dictionary A∗ ∈ Rn×m and sparse coefficients x∗(j) ∈ R
m

from data samples y(j) ∈Rn as

y(j) = A∗x∗(j), ‖x
∗
(j)‖0 ≤ s for all j = 1,2, . . . (3.2)

80

Analyzing (and developing an algorithm for untangling) the specific Kronecker depen-

dence structure (of the sparse coefficients) that arises due to this matrix factorization

view of the tensor decomposition task, we develop a provable tensor factorization al-

gorithm motivated by recent exact recovery results for online dictionary learning.

Our analysis leverages results from Chapter 2 (Rambhatla et al. (2019)), however,

the Kronecker dependence structure precludes us from applying this result directly.

As a result, a careful characterization of this structure forms the bulk of our analysis.

This structure also leads us consider more involved distributional assumptions on the

sparse factors. Interestingly, in this case, a lower-bound on sparsity arises, to ensure

that there are adequate data samples to support the learning algorithm. Since we adopt

a matricized view of the tensor factorization task, we also develop (and establish the

correctness of) a separate SVD-based algorithm to untangle a Kronecker-structured

sparse matrix. This matricized view of the tensor decomposition task can be of inde-

pendent interest.

3.2.2 Contributions

We develop an algorithm to recover the CP factors of tensor(s) Z(t)∈Rn×J×K , arriving (or

made available) at the tth instance, generated as per (3.1) from constituent factors A∗ ∈
R
n×m, B∗(t) ∈ RJ×m, and C∗(t) ∈ RK×m, where the unit-norm columns of A∗ obey some

incoherence assumptions, and B∗(t) and C∗(t) are sparse1. Our specific contributions

are summarized below.

• Provable algorithm for heterogeneously-structured tensor factorization: To the

best of our knowledge, our algorithm is the first to accomplish exact provable tensor

factorization – an inherently non-convex task – when the factors do not obey the

same structural assumptions.

• Exact recovery and linear convergence: Our algorithm – TensorNOODL – recovers

the true CP factors of the structured tensor(s) Z exactly (up to scaling and permuta-

tions) at a linear rate, starting with an appropriate initialization A(0) of A∗ , i.e., we

have A(t)
i →A∗i , B̂(t)

i →πBiB
∗(t)
i , and Ĉ(t)

i →πCiC
∗(t)
i , as iterations t→∞, where πBi and πCi

are constants.

• Rank revealing decomposition and uniqueness: Although estimating the rank of

a given tensor is NP hard, the incoherence assumption on A∗, and distributional

1Henceforth, we denote Z(t) as Z, and drop (·)(t) from B∗(t) and C∗(t) as well, for simplicity.

81
Table 3.1: Comparison of provable algorithms for tensor factorization and dictionary learn-
ing. As shown here, the existing provable tensor factorization techniques do not apply to the
case where A: incoherent, (B,C): sparse. We use dictionary learning to develop a provable
algorithm.

Method
Conditions Recovery Guarantees

Model Rank Initialization
Estimation Bias ConvergenceConsidered Constraints

TensorNOODL (this work) A: incoherent, (B,C):
sparse

m = O(n) O∗
(

1
log(n)

)
No Bias Linear

Sun et al. (2017)‡ (A,B,C): all incoherent
and sparse

m = o(n1.5) o(1) ‖Aij − Âij‖∞ = O(1
n0.25)† Not established

Sharan and Valiant (2017)‡ (A,B,C): all incoherent m = o(n0.25) Random ‖Ai − Âi‖2 = O(
√
m
n)† Quadratic

Anandkumar et al. (2015)‡ (A,B,C): all incoherent
m = O(n) O∗

(
1√
n

)
¶ ‖Ai − Âi‖2 = Õ(1√

n
)† Linear§

m = o(n1.5) O(1) ‖Ai − Âi‖2 = Õ(
√
m
n)† Linear

Arora et al. (2015) Dictionary Learning (3.2)
m = O(n) O∗

(
1

log(n)

)
O(
√
s/n) Linear

m = O(n) O∗
(

1
log(n)

)
Negligible bias § Linear

Mairal et al. (2009) Dictionary Learning
(3.2)

Convergence to stationary point; similar guarantees by Huang et al. (2016).

‡ This procedure is not online. † Result applies for each i ∈ [1,m]. ¶ Polynomial number of initializations mβ
2

are required, for β ≥m/n.
§ The procedure has an almost Quadratic rate initially. \ Requires poly(m) samples; not neurally plausible.

assumptions on B∗(t) and C∗(t), ensure that our matrix factorization view of the tensor

is rank revealing (Sidiropoulos et al., 2017). In other words, our model assumptions

ensure that the dictionary initialization algorithms (such as Arora et al. (2015)) can

recover the rank of the tensor. Following which, our algorithm can recover the true

factors (up to scaling and permutation) with high probability.

• Online, fast, and scalable: The online nature of our algorithm, with specific guide-

lines on choosing the parameters, and its neural plausibility (involving simple linear

and non-linear operations), make it suitable for large-scale distributed implemen-

tations in real-world applications. Our numerical simulations demonstrate superior

performance both in terms of accuracy and timing.

3.2.3 Related works

Tensor Factorization – Canonical polyadic (CP)/PARAFAC decomposition (3.1) cap-

tures relationships between the latent factors of the tensor. Here, the number of rank-1

tensors in the sum (3.1) defines the notion of rank for a tensor. One fascinating fea-

ture about tensor decompositions is that, unlike matrices decompositions, these can be

unique under relatively mild conditions (Kruskal, 1977; Sidiropoulos and Bro, 2000).

However, determining the rank of a given tensor is NP-hard (Håstad, 1990), and so

are most tensor problems, for instance tensor decompositions and rank determination

82

(Hillar and Lim, 2013). Nevertheless, ALS-based approaches have emerged as a pop-

ular choice for various tensor factorization tasks. However, establishing convergence

to even a stationary point is difficult (Mohlenkamp, 2013). Variants of ALS which do

come with some convergence guarantees do so at the expense of complexity (Li et al.,

2015; Razaviyayn et al., 2013), and convergence rate (Uschmajew, 2012); See Kolda

and Bader (2009) and Sidiropoulos et al. (2017).

On the other hand, guaranteed methods for tensor factorization initially relied on

computationally expensive orthogonalizing step (whitening), and therefore, did not ex-

tend to the overcomplete setting (m > n) (Comon, 1994; Kolda and Mayo, 2011; Zhang

and Golub, 2001; Le et al., 2011; Huang and Anandkumar, 2015; Anandkumar et al.,

2014, 2016). As a result, works such as Tang and Shah (2015) and Anandkumar et al.

(2015), developed algorithms based on convex relaxations and tensor power iterations,

respectively, by relaxing the orthogonality requirement of previous works to an inco-

herence condition to extend results to overcomplete settings. Here, in addition to in-

curing bias, the algorithm proposed in Anandkumar et al. (2015) may be impractical

in practice since it uses multiple random initializations, and for each initialization it

further relies on repeated power iterations coupled with clustering and co-ordinate

descent steps to recover incoherent factors. As a result, to leverage the simplicity of

the ALS algorithm, Sharan and Valiant (2017) developed a provable variant – orth-

ALS, by including an orthogonalization step. However, this step precludes the use of

this algorithm in overcomplete settings. Further, works such as Sun and Luo (2016),

consider the case wherein all factors are sparse as well as incoherent.

Overall, the existing provable techniques (summarized in Table 3.1) in addition to

being computationally expensive, apply to cases where all factors obey some incoher-

ence (and in some cases sparsity) conditions, i.e., they assume that the factors are simi-

larly structured. That is, these techniques do not extend to the case where the factors are

heterogeneously structured. As a result, there is a need for fast and scalable provable

tensor factorization techniques which can recover heterogeneously structured factors;

our work provides one such result.

Dictionary Learning – Popularized by the rich sparse inference literature, overcomplete

(m ≥ n) representations lead to sparse(r) representations which are robust to noise; see

Mallat and Zhang (1993); Chen et al. (1998); Donoho et al. (2006). Learning such spar-

sifying overcomplete representations is known as dictionary learning (Olshausen and

Field, 1997; Lewicki and Sejnowski, 2000; Mairal et al., 2009). Analogous to the ALS

83

n

K
J

Z → → A

Dictionary

X
Sparse

Coefficients

Dense Columns Collected to
form a Matrix

... ...

=Y

Figure 3.2: Problem Formulation: The dense columns of the structured tensor Z ∈ Rn×J×K are
collected in a matrix (Y). The matrix Y is viewed as arising from a dictionary learning model.

algorithm, the alternating minimization-based techniques became widely popular in

practice, however lacked theoretical guarantees. On the provable algorithms front,

starting with Spielman et al. (2012), who propose an algorithm for the undercomplete

setting, Agarwal et al. (2014); Arora et al. (2014); Barak et al. (2015) developed prov-

able algorithms for the overcomplete case, however their computational complexity

and stringent initialization requirements limited their use. This motivated Arora et al.

(2015) to develop a scalable online dictionary learning algorithm with a more relaxed

initialization requirement. Following these, instead of only focusing on dictionary re-

covery (like the techniques described above), in Chapter 2 we proposed a simple gradi-

ent descent-based algorithm for joint estimation of the dictionary and the coefficients,

which resulted in exact recovery of both factors at a linear rate.

Furthermore, tensor factorization algorithms have also been used to learn orthogo-

nal (Barak et al. (2015) and Ma et al. (2016)), and convolutional (Huang and Anandku-

mar, 2015) dictionaries. In this work, we complete the circle by accomplishing tensor

factorization via dictionary learning for exact recovery of the constituent factors (up

to scaling and permutation) of a structured tensor.

Notation. See Appendix 3.A for details.

3.3 Problem Formulation

Our aim is to recover the CP factors of a tensor Z assumed to be generated via the

model shown in (3.1). Without loss of generality, let the factor A∗ follow some incoher-

ence assumptions, while the factors B∗ and C∗ are sparse. Then, the mode-1 unfolding

Z1 ∈RJK×n of Z is given by

Z>1 = A∗(C∗ �B∗)> = A∗S∗, (3.3)

84

where S∗ ∈Rm×JK is defined as S∗ := (C∗�B∗)>. As a result, the matrix S∗ has a transposed

Khatri-Rao structure. In other words, the i-th row of S∗ is given by (C∗i ⊗B∗i)
>. Further,

since B∗ and C∗ are sparse, only a few columns of the matrix S∗ (say p) have non-zero

elements. Now, letting Y ∈Rn×p be a matrix formed by collecting the non-zero columns

of Z>1 , then we have

Y = A∗X∗, (3.4)

where X∗ ∈ R
m×p denotes the sparse matrix corresponding to the non-zero columns

of S∗. This now resembles the dictionary learning task shown in (3.4). As a result,

we can employ any provable dictionary learning algorithm (such as the proposed in

Chapter 2) to recover the dictionary factor A∗ and the sparse coefficients X∗ at each

time step t of the (online) algorithm. Now, we also develop an algorithm to untangle

the estimates of sparse factors B∗ and C∗ from this X∗ estimate. The overall modelling

procedure is summarized in Fig. 3.2.

3.4 Algorithm

Our algorithm, TensorNOODL (shown in Algorithm 2) is motivated from the dictio-

nary learning algorithm presented in Chapter 2, and operates by posing the tensor

decomposition problem as a matrix factorization task. The input to the algorithm is an

(ε0,2)-close estimate A(0) of A∗ for ε0 = O∗(1/ log(n)), where (ε,κ)-closeness is defined

as follows.

Definition 3.1 ((ε,κ)-closeness). A matrix A is (ε,κ)-close to A∗ if ‖A−A∗‖ ≤ κ‖A∗‖, and

if there is a permutation π : [m]→ [m] and a collection of signs σ : [m]→ {±1} such that

‖σ (i)Aπ(i) −A∗i‖ ≤ ε, ∀ i ∈ [m].

This initialization (which can be achieved by algorithms such as Arora et al. (2015))

ensures that the estimate A(0) is both, column-wise and in spectral norm sense, close

to A∗. Then a fresh tensor Z (generated independently as per (3.1)), arrives at the t-th

iteration of the algorithm, which then proceeds in three phases as described below.

Coefficient estimation – This stage uses R iterative hard thresholding (IHT) steps (3.6)

– with step-size η(r)
x and threshold τ (r) 2 chosen according to assumption A.6 – to arrive

at an estimate X̂(t) (or X(R)). Here, the number of iterations R are determined based

2(.)(r) denotes that the parameters can change with iterations.

85

Algorithm 2: TensorNOODL: Neurally plausible alternating Optimization-
based Online Dictionary Learning for Tensor decompositions.

Input: Structured tensor Z ∈Rn×J×K at each iteration t generated as per (3.1).
Parameters ηA, ηx, τ , T , and R chosen as per A.5 and A.6 for the
dictionary learning step.

Output: The dictionary A(t) and the factor estimates B(t) and C(t) (corresponding
to the current tensor Z) at each iterate t.

Initialize: Estimate A(0), which is (ε0,2)-near to A∗ for ε0 = O∗(1/ log(n))
for t = 0 to T − 1 do

Predict: (Estimate Coefficients)

Initialize: X(0) = TC/2(A(t)>Y) (3.5)

for r = 0 to R− 1 do

Update: X(r+1) = Tτ (r)(X(r) − η(r)
x A(t)>(A(t)X(r) −Y)) (3.6)

end
X̂(X̂(t)) := X(R) (We drop (.)(t) in our discussion for simplicity.)
Learn: (Update Dictionary)

Form empirical gradient estimate: ĝ(t) = 1
p (A(t)X̂(t)

indep −Y)sign(X̂(t)
indep)>

(3.7)

Take a gradient descent step: A(t+1) = A(t) − ηA ĝ(t) (3.8)

Normalize: A(t+1)
i = A(t+1)

i /‖A(t+1)
i ‖ ∀ i ∈ [m]

Recover Sparse Factors
Form Ŝ by putting back columns of X̂(t) at the non-zero column locations

of Z>1 . [B̂, Ĉ] = UNTANGLE-KRP(̂S)
end

Algorithm 3: Untangle Khatri-Rao Product (KRP): Recovering the Sparse fac-
tors

Input: Estimated KRP, Ŝ
Output: Estimates B̂ and Ĉ of matrices B∗ and C∗ up to scaling.
for i = 1 . . .m do

Reshape: the i-th row of Ŝ into M(i) ∈RJ×K .
Set: B̂i ←

√
σ1u1, and Ĉi ←

√
σ1v1, where σ1, u1, and v1 denote the largest

singular value and the corresponding left and right singular vectors of M(i),
respectively.

end

on the target tolerance of the desired coefficient estimate, specifically we choose R =

Ω(log(1/δR)), where (1− η(r)
x)R ≤ δR.

86

Dictionary update – The coefficient estimates are used to update the dictionary us-

ing an approximate gradient descent strategy (3.8) with step size ηA chosen according

to assumption A.5. The algorithm requires T = max(Ω(log(1/εT)),Ω(log(
√
s/δT))) it-

erations to achieve ‖A(T)
i −A∗i‖ ≤ εT ,∀i ∈ [m] and |X̂(T)

ij −X∗ij | ≤ δT ; see Chapter 2 and

Rambhatla et al. (2019).

Untangling the Khatri-Rao Structure – As shown in (3.4), since we only operate on the

non-zero fibers of Z>1 , i.e., TensorNOODL is agnostic to the tensor structure of the data.

Therefore, we need a separate procedure to estimates the sparse factors (B∗ and C∗)

using X̂. To this end, we first form the estimate Ŝ of S∗ by placing columns of X̂ at their

corresponding locations of Z>1 . Next, we use a SVD-based algorithm (Algorithm 3)

to recover the sparse factors (up to scaling and permutation) using the element-wise

ζ-close estimate of S∗, i.e., |̂Sij −S∗ij | ≤ ζ predicted by Algorithm 2.

3.5 Main Result

In this section we formalize our model assumptions and state our main result; detailed

analysis is in Appendix 3.B. We begin with the notion of incoherence required for A∗

(henceforth refered to as dictionary) columns. Specifically, we require that A∗ is µ-

incoherent, defined as follows.

Definition 3.2. A matrix A ∈Rn×m with unit-norm columns is µ-incoherent if for all i , j

the inner-product between the columns of the matrix follow |〈Ai ,Aj〉| ≤ µ/
√
n.

This ensures that the atoms of the dictionary can be distinguished from each other,

and can be viewed as a relaxed orthogonality constraint. Next, we assume that the

sparse factors B∗ and C∗ are drawn from distribution classes Γ sG
α,C and Γ Rad

β , respectively,

where Γ sG
γ,C and Γ Rad

γ are defined as follows.

Definition 3.3 (Distribution Class Γ sG
γ,C and Γ Rad

γ). A matrix M belongs to a

• Distribution class Γ sG
γ,C : if each entry of M is independently non-zero with prob-

ability γ , and the values at the non-zero locations are sub-Gaussian, zero-mean

with unit variance and bounded away from C for some positive constant C ≤ 1,

i.e., |Mij | ≥ C for (i, j) ∈ supp(M).

• Distribution class Γ Rad
γ : if each entry of M is independently non-zero with proba-

bility γ , and the values at the non-zero locations are drawn from the Rademacher

distribution.

87

Ci ∈RK Bi ∈RJ

=

×

1

=

×

2

= =

×

=

× ×

=

×

K

=

. . .

Figure 3.1: Dependence induced by the transposed Khatri-Rao structure.

In essence, we assume that elements of B∗ (C∗) are non-zero with probability α (β),

and that for B∗ the values at the non-zero locations are drawn from a zero-mean unit-

variance sub-Gaussian disribution, bounded away from zero and the non-zero values

of C∗ are drawn from the Rademacher distribution. This assumption ensures that the

resulting sparse coefficient matrix X∗ obeys the distributional assumptions required

for the success of the dictionary learning task3.
We now turn our attention to the implications of the dependence structure of S∗.

Fig. 3.1 shows a row of the matrix S∗, each entry of which is formed by multiplication

of an element of C∗i with each element of columns of B∗i . As a result, each row of

the resulting matrix S∗ has K blocks (of size J), where the k-th block is controlled by

C∗k,i . Therefore, the (i, j)-th entry of transposed Khatri-Rao structured matrix S∗ can be

written as

S∗ij = C∗(
⌊
j
J

⌋
+ 1, i)B∗(j − J

⌊
j
J

⌋
, i).

As a result, depending upon the sparsity of B∗ and C∗, S∗ may have all-zero (degen-

erate) columns, resulting in degenerate columns in Z>1 . Therefore, we only use Y, the

non-zero columns of Z>1 .

We also observe that although elements in a column of S∗ are independent of each

other, the Khatri-Rao structure induces a dependence structure across a row when the

elements depend on the same value of B∗ or C∗. This dependence may not be an issue

in practice, where we can use all non-zero columns of Z>1 . However for the analysis,

it is necessary to select a group of independent data samples from Z>1 . One way to

choose an independent set of samples is by collecting the first element from the first

block, second element from the second block and so on, to ensure that the samples are

3The non-zero entries of C∗ can also be assumed to be drawn from a sub-Gaussian distribution (like
those of B∗) at the expense of sparsity, incoherence, dimension(s), and sample complexity. Specifically
when non-zero entries of B∗ and C∗ are drawn from sub-Gaussian distribution (as per Γ sG

γ,C) , we will need

the dictionary learning algorithm to work with the coefficient matrix X∗ (formed by product of entries
of B∗ and C∗) which will now have sub-Exponential distributed non-zero entries. Since sub-Exponential
tails decay slower than those of sub-Gaussians, we will need additional restrictions on other parameters.

88

not formed from the same element from either of the sparse factors. This results in a

size L = min(J,K) independent samples for a given Z>1 . Overall, these assumptions on

factors B∗ and C∗ mean that the L independent columns of X∗ (X∗indep) belong to the

distribution class D defined as follows; see also Chapter 2 and Rambhatla et al. (2019).

Definition 3.4 (Distribution class D). The coefficient vector x∗ belongs to an unknown

distribution D, where the support S = supp(x∗) is at most of size s, Pr[i ∈ S] = Θ(s/m) and

Pr[i, j ∈ S] = Θ(s2/m2). Moreover, the distribution is normalized such that E[x∗i |i ∈ S] = 0

and E[x∗
2

i |i ∈ S] = 1, and when i ∈ S, |x∗i | ≥ C for some constant C ≤ 1. In addition, the

non-zero entries are sub-Gaussian and pairwise independent conditioned on the support.

Further, the (ε0,2)-closeness (Def. 3.1) ensures that the signed-support of the coeffi-

cients are recovered correctly (with high probability), where signed-support is defined

as follows.

Definition 3.5. The signed-support of a vector x is defined as sign(x) · supp(x).

Moreover, the unit-norm constraint on A∗ implies that the scaling (including the

sign) ambiguity only exists in the recovery of the factors B∗ and C∗. To this end, we

will regard our algorithm to be successful as long as it recovers factors in the following

sense.

Definition 3.6 (Sparse factor scaling indeterminacy). Factorizations [[A,B,C]] are con-

sidered equivalent up to scaling, i.e, [[A,B,C]] = [[A∗,B∗Dσb ,C
∗Dσc]] where σb(σc) is a vector

of scalings (including signs) corresponding to each column of the factors B and C, respec-

tively.

We employ an approximate (since X∗ is not known exactly) gradient descent-based

strategy (3.7) to update A(t) by finding an appropriate direction g(t)
i to ensure descent.

We show that (Ω(s/m),Ω(m/s),0)-correlatedness (defined below) of the expected gra-

dient vector allows us to make progress at every iteration, where “0” indicates that we

do not incurr any bias. This can be viewed as a local descent condition which leads

to the true dictionary columns; see also Candès et al. (2015); Chen and Wainwright

(2015b); Arora et al. (2015); Rambhatla et al. (2019).

Definition 3.7. A vector g(t)
i is (ρ−,ρ+

,ζt)-correlated with a vector z∗ if

〈g(t)
i ,z

(t) − z∗〉 ≥ ρ−‖z(t) − z∗‖2 + ρ+‖g
(t)
i ‖

2 − ζt .

Overall, our model assumptions can be formalized as follows, with which we state

our main result.

89

A.1 A∗ is µ-incoherent (Def. 3.2), where µ = O(log(n)), ‖A∗‖ = O(
√
m/n) and m = O(n);

A.2 A(0) is (ε0,2)-close to A∗ as per Def. 3.1, and ε0 = O∗(1/ log(n));

A.3 Sparse factors B∗ and C∗ are drawn from distribution class Γ sG
α,C and Γ Rad

β , respec-

tively (Def. 3.3);

A.4 The sparsity controlling parameters α and β obey αβ = O(
√
n/mµ log(n)) for m =

Ω(log(min(J,K))/αβ), and the resulting column sparsity s of S∗ is s = O(αβm);

A.5 The step-size for dictionary update satisfies ηA = Θ(m/s);

A.6 The step-size and threshold for coefficient estimation satisfies η(r)
x < c1(εt ,µ,n, s) =

Ω̃(s/
√
n) < 1 and τ (r) = c2(εt ,µ, s,n) = Ω̃(s2/n) for small constants c1 and c2.

Theorem 3.1 (Main Result). Suppose a tensor Z ∈Rn×J×K provided to Algorithm 2 at each

iteration t admits a decomposition of the form (3.1) with factors A∗ ∈ Rn×m, B∗ ∈ RJ×m and

C∗ ∈ RK×m and min(J,K) = Ω(ms2). Further, suppose that the assumptions A.1-A.6 hold.

Then, given R = Ω(log(n)), with probability at least (1− δalg) for some small constant δalg,

the coefficient estimate X̂(t) at t-th iteration has the correct signed-support and satisfies

(X̂(t)
i,j −X∗i,j)

2 ≤ ζ2 := O(s(1−ω)t/2‖A(0)
i −A∗i‖), for all (i, j) ∈ supp(X∗).

Furthermore, for some 0 < ω < 1/2, the estimate A(t) at t-th iteration satisfies

‖A(t)
i −A∗i‖

2 ≤ (1−ω)t‖A(0)
i −A∗i‖

2, for all t = 1,2,

Consequently, Algorithm 3 recovers the supports of the sparse factors B∗ and C∗ correctly,

and ‖B̂i −B∗i‖2 ≤ εB and ‖Ĉi −C∗i‖2 ≤ εC , where εB = εC = O(ζ
2

αβ).

In other words, Theorem 3.1 states that for Algorithm 2 to succeed, the columns

of the incoherent factor A∗ are sufficiently spread out ensuring identifiability (A.1),

and that the sparse factors B∗ and C∗ are sparse (A.3), but not too sparse (A.4). The

lower-bound on rank/sparsity (m = Ω(min(J,K)/αβ)) ensures that there are adequate

number of samples available for the learning procedure for a given rankm. As a result,

higher the rank, more the data samples required at every iteration (A.4). This effect

is captured by the min(J,K) = Ω(ms2) requirement, wherein s = O(αβm) with high

probability. This lower bound is due to the samples complexity of (Rambhatla et al.,

2019); the proposed algorithm also works for smaller (J,K) in practice. The algorithm

also relies on an appropriate initialization of the dictionary factor (A(0)), which can be

90

achieved by techniques such as Arora et al. (2015) (A.2). Such algorithms can also be

used for model selection, i.e., determining m. Furthermore, the our main result also

characterizes the conditions on learning parameters (step sizes and threshold A.5∼A.6)

for the success of the algorithm.

Leveraging the dictionary learning view for this tensor factorization task, Tensor

NOODL is, to the best of our knowledge, the first algorithm to provably factorize such a

3-way structured tensor 4. The analysis presented here can be potentially extended to

higher order tensors with similar structure, however, will entail further careful analy-

sis to entangle the sparse factors effectively.

3.6 Numerical Simulations

We now evaluate the performance of our algorithm for a structured tensor factorization

task5. Note that, the provable tensor factorization algorithms shown in Table 3.1, i.e.,

are not suitable for handling the incoherence along with the structured sparsity of the

factors, and are suitable only for cases wherein all the factors obey the same structural

assumptions (incoherence). In addition, as discussed in Section 3.2.3, Anandkumar

et al. (2015) entails a computationally expensive algorithm, Sharan and Valiant (2017)

works for undercomplete settings, and Sun et al. (2017) requires sparsity as well as

incoherence. Therefore, we compare the performance of TensorNOODL with online dic-

tionary learning algorithms presented in Arora et al. (2015) (Arora(b) and Arora(u)),

and the algorithm proposed in Mairal et al. (2009), which can be viewed as a variant of

ALS (with matricized view of the task) with convergence results (to a stationary point).

In the experiments, we focus on the recovery of X∗ (including support recovery) since

the performance of Algorithm 3 (to recover B∗ and C∗) solely depends on exact recovery

of X∗. We fix the random seeds in trials for reproducibility. The setting, comparisons

with techniques, and detailed results are in Appendix 3.E.

Discussion – TensorNOODL achieves orders of magnitude superior recovery as com-

pared to competing techniques both for the recovery of A∗, and X∗. Furthermore, only

TensorNOODL recovers the correct support of the sparse matrix X∗, crucial for recov-

ery of the sparse factors (Appendix 3.E). In Fig. 3.1, we analyze the number of samples

4Note that the existing provable techniques shown in Table 3.1 (such as Sharan and Valiant (2017)
and Anandkumar et al. (2015)) are not suitable for handling the incoherence along with the structured
sparsity of the factors, and are suitable only for cases wherein all the factors obey the same structural
assumptions (incoherence).

5https://github.com/srambhatla/TensorNOODL; see Chapter 7 for details.

https://github.com/srambhatla/TensorNOODL

91

(J,K) = 100 (J,K) = 300 (J,K) = 500
D

ic
ti

on
ar

y
R

ec
ov

er
y

A
cr

os
s

Te
ch

n
iq

u
es

(a) (b) (c)

Figure 3.1: Data samples required by TensorNOODL using the number of iterations for con-
vergence (see footnote 6). Panels (a), (b), and (c) show the number of iterations taken by
TensorNOODL to achieve a target tolerance of 10−10 for A for J = K = 100, 300, and 500, respec-
tively across the choices of rank m = {50, 150, 300, 450, 600} and α = β = {0.005, 0.01, 0.05},
averaged across three Monte Carlo runs.

required across different choices of the dimension (J,K), rank (m) and sparsity parame-

ters (α,β) averaged across the Monte Carlo runs using the number of iterations T 6. We

observe three interesting trends, also predicted by our analysis. First, in each panel

the number of iterations (to achieve target tolerance) decrease as we move from left

to right. This is due to increase in data samples with increasing (α,β). Second, look-

ing across panels for a fixed rank and sparsity parameters, the number of iterations

decreases with increasing (J,K), also attributed to the increase in available data sam-

ples. Finally, we note that as the rank increases, TensorNOODL requires more samples,

as pointed by our sample complexity requirement. It is worth noting that although we

consider the case of fixed (J,K) and (α,β), TensorNOODL can also be used when these

parameters vary at each iteration. This feature can be especially useful in real-world

applications, where the dimensions and sparsity of the tensor may change over iter-

ations. In addition, since X∗ columns can be estimated independently, and further

since we only use the non-zero fibers, TensorNOODL can be implemented in highly dis-

tributed settings.

3.7 Discussion and Conclusions
We propose, to the best of out knowledge, the first algorithm for the exact recovery

of CP factors of a structured tensor (an inherently non-convex optimization task) at a

6Since our algorithm takes a fresh tensor as an input at each iteration t of the algorithm, the number
of iterations T to achieve the target tolerance can be viewed as a surrogate for the sample requirement.

92

linear rate, where the columns of one of the tensor factors obeys some incoherence as-

sumption, while the other two factors are sparse. Here, we cast the tensor factorization

problem as a dictionary learning task to develop a provable algorithm to recover these

factors (up to permutation and scaling indeterminacies). The Kronecker-dependence

structure induced by the matricization makes a few data samples unusable (since the

algorithm requires independent samples for learning). Although, not an issue in prac-

tice, this lead to somewhat conservative sample complexity results in theory. Relaxing

these requirements, extending the analysis to noisy settings, and using TensorNOODL

in other structured tensor factorization tasks, are all promising future directions.

Appendices: Provable Structured

Tensor Factorization via Dictionary

Learning

We summarize the notation used in our work in Appendix 3.A, including with a list of

frequently used symbols and their corresponding definitions. Next, in Appendix 3.B,

we present the proof of our main result, and organize the the proofs of intermediate

results in Appendix 3.C. Additional results are listed in Appendix 3.D. Furthermore,

we show the detailed experimental results in Appendix 3.E, along with how to repro-

duce the numerical results of this work. We also provide the code used to compile

these results, with specific recommendation on the parameter setting.

3.A Summary of Notation

We summarizes the definitions of some frequently used symbols in our analysis in

Table 3.A.1 and 3.A.2. Also note that, since we show that ‖A(t)
i −A∗i‖ ≤ εt contracts in

every step, therefore we fix εt ,ε0 = O∗(1/ log(n)) in our analysis.

3.B Proof of Theorem 1

In this section, we present the details of the analysis pertaining to our main result

(shown below).

Theorem 3.1 [Main Result] Suppose a tensor Z ∈ Rn×J×K provided to Algorithm 2 at

each iteration t admits a decomposition of the form (3.1) with factors A∗ ∈Rn×m, B∗ ∈RJ×m

93

94
Table 3.A.1: Frequently used symbols: Definitions of Probabilities

Probabilities

Symbol Definition Symbol Definition

γ γ := αβ δ
(t)
Bi

δ
(t)
Bi

= exp(− ε2Jα
2(1+ε/3)) for any ε > 0.

δ
(t)
T δ

(t)
T = 2m exp(− C2

O∗(ε2
t)

) δ
(t)
β 2s exp(− 1

O(εt)
)

δ
(t)
s δ

(t)
s = min(J,K)exp(−ε2αβm/2(1 + ε/3))

for any ε > 0
δ

(t)
p δ

(t)
p = exp(−ε2

2 L(1− (1−γ)m))

δ
(t)
IHT δ

(t)
IHT = δ(t)

T + δ(t)
β δ

(t)
NOODL δ

(t)
NOODL = δ(t)

T + δ(t)
β + δHW + δ(t)

gi + δ(t)
g

qi qi = Pr[i ∈ S] = Θ(sm) qi,j qi,j = Pr[i, j ∈ S] = Θ(s
2

m2)

pi pi = E[X∗ijsign(X∗ij)|X
∗
ij , 0] δ

(t)
HW δ

(t)
HW = exp(−1/O(εt))

δ
(t)
gi δ

(t)
gi = exp(−Ω(s)) δ

(t)
g δ

(t)
g = (n+m)exp(−Ω(m

√
log(n))

and C∗ ∈ RK×m and min(J,K) = Ω(ms2). Further, suppose that the assumptions A.1-A.6

hold. Then, given R = Ω(log(n)), with probability at least (1− δalg) for some small constant

δalg, the coefficient estimate X̂(t) at t-th iteration has the correct signed-support and satisfies

(X̂(t)
i,j −X∗i,j)

2 ≤ ζ2 := O(s(1−ω)t/2‖A(0)
i −A∗i‖), for all (i, j) ∈ supp(X∗).

Furthermore, for some 0 < ω < 1/2, the estimate A(t) at t-th iteration satisfies

‖A(t)
i −A∗i‖

2 ≤ (1−ω)t‖A(0)
i −A∗i‖

2, for all t = 1,2,

Consequently, Algorithm 3 recovers the supports of the sparse factors B and C correctly, and

‖B̂i −Bi‖2 ≤ εB and ‖Ĉi −Ci‖2 ≤ εC , where εB = εC = O(ζ
2

αβ).

Here, δalg = δs + δ(t)
p + δ(t)

Bi
+ δNOODL. Further, δ(t)

NOODL = δ
(t)
T + δ(t)

β + δHW + δ(t)
gi + δ(t)

g ,

where δ(t)
T = 2m exp(−C2/O∗(ε2

t)), δ(t)
β = 2s exp(−1/O(εt)), δ

(t)
HW = exp(−1/O(εt)), δ

(t)
gi =

exp(−Ω(s)), δ(t)
g = (n+m)exp(−Ω(m

√
log(n)). Furthermore, δ(t)

s = min(J,K)exp(− ε2αβm
2(1+ε/3))

for any ε > 0, δ(t)
p = exp(−ε2

2 L(1− (1−γ)m)), and δ(t)
Bi

= exp(− ε2Jα
2(1+ε/3)) for any ε > 0. Also,

‖A(t)
i −A∗i‖ ≤ εt.

Proof. of Theorem 3.1 As alluded to in our discussion, we achieve tensor factorization

by means of dictionary learning. In particular, our algorithm is based on the recent

provable dictionary learning algorithm proposed in Rambhatla et al. (2019). It is worth

95
Table 3.A.2: Frequently used symbols: Notation and Parameters

Symbol Definition Symbol Definition

(·)∗ Used to represent the
ground-truth matrix.

(·)(t),

(̂·)
(t)

,
and (̂·)

Used to represent the esti-
mates formed by the algo-
rithm.

(·)(t) The subscript t is used to
represent the estimates at
each iteration of the online
algorithm.

(·)(r) The subscript r is used to
represent the IHT iterates.

A(t)
i i-th column of A∗ estimate at

the t-th iterate.
B̂ (Ĉ) Estimate of B∗ (C∗) at an iter-

ation of the online algorithm.

S∗ Transposed Khatri-Rao
structured (sparse) matrix,
S∗ = (C∗ �B∗)>, its i-th row is
given by C∗i ⊗B∗i .

X∗ Sparse matrix formed by col-
lecting non-zero columns of
S∗.

p Number of columns in X∗. Z>1 Mode-1 unfolding of Z, Z>1 =
A∗(C∗ �B∗)>.

εt Upper-bound on column-
wise error at the t-th
iterate.‖A(t)

i − A∗i‖ ≤ εt =
O∗(1

log(n)).

εB Upper-bound on column-
wise `2-error in the esti-
mate B̂ at each iteration t,
‖B̂i −B∗i‖ ≤ εB = O(ξ

2

αβ).

εC Upper-bound on column-
wise `2-error in the esti-
mate Ĉ at each iteration t,
‖Ĉi −C∗i‖ ≤ εC = O(ξ

2

αβ).

µ The incoherence between the
columns of the factor A∗; see
Def. 3.2.

µt Incoherence between
the columns of A(t),
µt√
n

= µ√
n

+ 2εt .

α(β) The probability that an ele-
ment Bij (Cij) of B (C) is
non-zero.

ξ The element-wise upper
bound on the error between
Ŝij and S∗ij , i.e., |S∗ij − Ŝij | ≤ ξ.

s The number of non-zeros in
a column of S∗.

R The number of IHT itera-
tions at each iteration t of the
online algorithm.

T Total number of online itera-
tions.

δR Decay parameter for each
IHT stage, δR ≥ (1− ηx)R.

δT Element-wise target er-
ror tolerance for fi-
nal estimate of X∗,
|X̂(T)
ij −X∗ij | ≤ δT ∀i ∈ supp(X∗).

C Lower-bound on x∗is, |X∗ij | ≥ C
for i ∈ supp(X∗) and C ≤ 1

L L := min(J,K)

noting that, our procedure itself is agnostic to the dictionary learning algorithm, and

can be used with any dictionary learning algorithm which exactly recovers both factors

96

of the dictionary learning model. In the following discussion we reinstantiate selective

results from Chapter 2, and present the statement of the results here for completeness.

The alternating optimization-based algorithm for online dictionary learning pro-

posed in Chapter 2 (and Rambhatla et al. (2019)) is based on jointly making progress

on the dictionary and the coefficient estimates. Here, the authors propose a simple

provable algorithm for this matrix factorization task, which recovers the dictionary

and the coefficients exactly, at a linear rate, given an appropriate initial estimate of the

dictionary.

The proof procedure relies three main steps – 1) Recovering the signed-support of

the coefficient estimate, 2) expressing the error incurred by the coefficient estimate as

being composed of a component that depends on the initial coefficient estimate (and

ensuring that this becomes negligible given sufficient IHT-based coefficient update it-

erations), and a component that depends on the error in the dictionary, 3) showing that

the dictionary makes progress at every iteration of the online algorithm, and maintains

the conditions required for the next iteration of the online algorithm.

The authors show that these steps result in removal of the bias in dictionary esti-

mation as compared to the prior art, in addition to providing simultaneous recovery

of the sparse coefficient. The separability of the updates across the data samples and

the simplicity of the algorithm makes it amenable for large scale distributed (neural)

implementations. This coupled with the exact recovery guarantees for both factors

makes it particularly suitable for the tensor factorization considered in this work; see

Chapter 2 and Rambhatla et al. (2019) for detailed proofs.

In order to leverage these results, we need to get a handle on the sparsity (number

of non-zeros in a column of S∗), and characterize the number of usable (independent)

data samples available to the algorithm. To this end, the following lemma characterizes

the upper bound on the sparsity, k, the number of non-zeros in a column of S∗.

Lemma 3.1. If m = Ω(log(min(J,K))/αβ) then with probability at least (1 − δ(t)
s) the

number of non-zeros s, in a column of S∗ are upper-bounded as s = O(αβm), where

δ
(t)
s = min(J,K)exp(−ε2αβm/2(1 + ε/3)) for any ε > 0.

In line with our intuition, the sparsity scales with the parameters α, β and m.

We now characterize the number of usable data samples available to the algorithm.

For this, notice that the i-th row of S∗ can be written as (C∗i⊗B∗i)
>. Now, since B∗ and C∗

are sparse, there are a number of columns in S∗ which are degenerate (all-zeros). As a

97

result, the corresponding data samples (columns of Z>1) are also degenerate, and cannot

be used for learning. Furthermore, due to the dependence structure in S∗ (discussed

in Section 3.5) some of the data samples are dependent on each other, and at least

from the theoretical perspective, are not eligible for the learning process. Therefore,

we characterize the expected number of viable data samples in the following lemma.

Lemma 3.2. For L = min(J,K), γ = αβ, and any ε > 0 and suppose we have

L ≥ 2
(1−(1−γ)m)ε2 log(1

δ
(t)
p

),

then with probability at least (1− δp),

p = L(1− (1−γ)m),

where δ(t)
p = exp(−ε2

2 L(1− (1−γ)m)).

Here, we observe that the number of viable samples increase with number of inde-

pendent samples L = min(J,K), sparsity parameter γ = αβ, and rank of the decompo-

sition m.

Using Lemma 3.1 and Lemma 3.2, we can now use Theorem 2.1 from Chapter 2

to show that online learning algorithm, which alternates between an Iterative Hard

Thresholding (IHT) step to estimate the non-zero columns of S∗, and approximate gra-

dient descent-based update for the dictionary factor, recover A∗ and S∗ (or X∗) exactly;

see also Rambhatla et al. (2019).

Specifically, for recovery of the sparse matrix S∗ (or X∗), we leverage the Lemma 2.1

from Chapter 2 to show that at the t-th iteration of the online algorithm, the initial

sparse coefficient estimate (X(0)) has the correct signed-support (see Def. 3.5) as X∗

with probability (1−δ(t)
T) given an (ε0,2)-close estimate A(0) of the the true factor A∗, for

δ
(t)
T = 2m exp(− C2

O∗(ε2
t)

). To use this result, we arrive at the condition that s = O(αβm) =

O∗
√
n/µ log(n), which leads us to assumption A.4.

Lemma 3.3 (from Lemma 2.1). (Signed-support recovery) Suppose A(t) is εt-close to

A∗. Then, if µ = O(log(n)), s = O∗(
√
n/µ log(n)), and εt = O∗(1/

√
log(m)), with probability

at least (1− δ(t)
T) for each random sample y = A∗x∗:

sign(TC/2((A(t))>y) = sign(x∗),

98

where δ(t)
T = 2m exp(− C2

O∗(ε2
t)

).

Next, we use Lemma 3.4 to arrive at the conditions on the step size parameter η(r)
x ,

and the threshold τ (r), such that that the IHT-step preserves the correct signed-support

with probability δ(t)
IHT, for δ(t)

IHT = 2m exp(− C2

O∗(ε2
t)

) + 2s exp(− 1
O(εt)

).

Lemma 3.4 (from Lemma 2.2). (IHT update step preserves the correct signed-support)

Suppose A(t) is εt-close to A∗, µ = O(log(n)), s = O∗(
√
n/µ log(n)), and εt = O∗(1/ log(m))

Then, with probability at least (1 − δ(t)
β − δ

(t)
T), each iterate of the IHT-based coeffi-

cient update step shown in (3.6) has the correct signed-support, if for a constant

c
(r)
1 (εt ,µ, s,n) = Ω̃(k2/n), the step size is chosen as η(r)

x ≤ c
(r)
1 , and the threshold τ (r)

is chosen as

τ (r) = η(r)
x (tβ + µt√

n
‖x(r−1) − x∗‖1) := c(r)

2 (εt ,µ, s,n) = Ω̃(s2/n),

for some constants c1 and c2. Here, tβ = O(
√
sεt), δ

(t)
T = 2m exp(− C2

O∗(ε2
t)

) ,and δ
(t)
β =

2s exp(− 1
O(εt)

).

To get a handle on the error incurred by the each element of the sparse matrix X̂,

i.e.,

|X∗ij − X̂ij | = |S∗ij − Ŝij | ≤ ξ, (3.9)

and derive an expression for estimating the sparse matrix X̂, we use Lemma 3.5 and

3.6. Here, we use Lemma 3.5 to show that the error in the non-zero elements of X̂ only

depends on the error in the incoherent factor (dictionary) A(t), which leads us to

ξ2 := O(s(1−ω)t/2‖A(0)
i −A∗i‖), for all (i, j) ∈ supp(X∗). (3.10)

Lemma 3.5 (from Lemma 2.3). (Upper-bound on the error in coefficient estimation)

With probability at least (1 − δ(t)
β − δ

(t)
T) the error incurred by each element (i1, j1) ∈

supp(X∗) of the coefficient estimate is upper-bounded as

|X̂i1j1 −X∗i1j1 | ≤ O(tβ) +
(
(R+ 1)sηx

µt√
n

max
(i,j)
|X(0)
ij −X∗ij |+ |X

(0)
i1j1
−X∗i1j1 |

)
δR = O(tβ)

99

where tβ = O(
√
sεt), δR := (1 − ηx + ηx

µt√
n

)R, δ(t)
T = 2m exp(− C2

O∗(ε2
t)

), δ(t)
β = 2s exp(− 1

O(εt)
),

and µt is the incoherence between the columns of A(t).

Therefore, if the the column-wise error in the dictionary decreases at each itera-

tion t, then the IHT-based sparse matrix estimates also improve progressively. Now,

the expression for the coefficient estimates (Lemma 3.6) facilitates the analysis of the

dictionary updates.

Lemma 3.6 (from Lemma 2.4). (Expression for the coefficient estimate at the end

of R-th IHT iteration)] With probability at least (1− δ(t)
T − δ

(t)
β) the i-th element of the

coefficient estimate, for each i ∈ supp(x∗), is given by

x̂i := x(R)
i = x∗i (1−λ

(t)
i) +ϑ(R)

i .

Here, |ϑ(R)
i | = O(tβ), where tβ = O(

√
sεt). Further, λ(t)

i = |〈A(t)
i − A∗i ,A

∗
i〉| ≤

ε2
t

2 , δ(t)
T =

2m exp(− C2

O∗(ε2
t)

) and δ(t)
β = 2s exp(− 1

O(εt)
).

The IHT-based coefficient estimation step is foundational for the recovery of the

sparse tensor factors B∗ and C∗. Before we show that the approximate gradient descent-

based update step to recover A∗ makes progress at each iteration of the online algo-

rithm, we first show the correctness of Algorithm 3. This procedure recovers the sparse

factors B∗ and C∗, given element-wise ξ-close estimate Ŝ of S∗. The following lemma es-

tablishes recovery guarantees on the sparse factors using the SVD-based Algorithm 3,

up to sign and scaling ambiguity.

Lemma 3.7. Suppose the input Ŝ to Algorithm 3 is entry-wise ζ close to S∗, i.e., |̂Sij −
S∗ij | ≤ ζ and has the correct signed-support as S∗. Then with probability atleast (1 −

δ
(t)
IHT − δ

(t)
Bi

), both B̂i and Ĉi have the correct support, and
∥∥∥∥ B∗i
‖B∗i‖
−πi

B̂i
‖B̂i‖

∥∥∥∥ = O(ζ2) and∥∥∥∥ C∗i
‖C∗i‖
−πi

Ĉi

‖Ĉi‖

∥∥∥∥ = O(ζ2), where δ(t)
IHT = 2m exp(− C2

O∗(ε2
t)

)+2s exp(− 1
O(εt)

) for ‖A(t)
i −A∗i‖ ≤ εt,

and δ(t)
Bi

= exp(− ε2Jα
2(1+ε/3)) for any ε > 0.

Here, we have used δ(t)
IHT = δ(t)

β + δ(t)
T for simplicity. To recover the incoherent (dic-

tionary) factor A∗, we first develop an expression for the expected gradient vector in

Lemma 3.8.

Lemma 3.8 (from Lemma 2.5). (Expression for the expected gradient vector) Sup-

pose that A(t) is (εt ,2)-near to A∗. Then, the dictionary update step in Algorithm 2

amounts to the following for the j-th dictionary element

100

E[A(t+1)
j] = A(t)

j + ηAg(t)
j ,

where for a small γ̃ , g(t)
j is given by

g(t)
j = qjpj

(
(1−λ(t)

j)A(t)
j −A∗j + 1

qjpj
∆

(t)
j ± γ̃

)
,

λ
(t)
j = |〈A(t)

j −A∗j ,A
∗
j〉|, and ∆

(t)
j := E[A(t)

S ϑ
(R)
S sign(x∗j)], where ‖∆(t)

j ‖ = O(
√
mqi,jpjεt‖A(t)‖).

Now, since we use the empirical gradient estimate, we use Lemma 3.9 to show that

the empirical gradient vector concentrates around its mean.

Lemma 3.9 (from Lemma 2.6). (Concentration of the empirical gradient vector) Given

p = Ω̃(mk2) samples, the empirical gradient vector estimate corresponding to the i-th

dictionary element, ĝ(t)
i concentrates around its expectation, i.e.,

‖̂g(t)
i − g(t)

i ‖ ≤ o(smεt).

with probability at least (1− δ(t)
gi − δ

(t)
β − δ

(t)
T − δ

(t)
HW), where δ(t)

gi = exp(−Ω(s)).

We then leverage Lemma 3.10 to show that the empirical gradient vector ĝ(t)
j is

correlated with the descent direction (see Def. 3.7), which ensures that the dictionary

estimate makes progress at each iteration of the online algorithm.

Lemma 3.10 (from Lemma 2.7). (Empirical gradient vector is correlated with the

descent direction) Suppose A(t) is (εt ,2)-near to A∗, s = O(
√
n) and ηA = O(m/s). Then,

with probability at least (1− δ(t)
T − δ

(t)
β − δ

(t)
HW − δ

(t)
gi) the empirical gradient vector ĝ(t)

j is

(Ω(k/m),Ω(m/k),0)-correlated with (A(t)
j −A∗j), and for any t ∈ [T],

‖A(t+1)
j −A∗j‖

2 ≤ (1− ρ ηA)‖A(t)
j −A∗j‖

2.

This step also requires closeness that the estimate A(t) and A∗ are close, both column-

wise and in the spectral norm-sense, as per Def 3.1. To this end, we show that the up-

dated dictionary matrix maintain the closeness property. For this, we first show that

the gradient matrix concentrates around its mean in Lemma 3.11.

Lemma 3.11 (from Lemma 2.8). (Concentration of the empirical gradient matrix)

With probability at least (1 − δ(t)
β − δ

(t)
T − δ

(t)
HW − δ

(t)
g), ‖̂g(t) − g(t)‖ is upper-bounded by

O∗(sm‖A
∗‖), where δ(t)

g = (n+m)exp(−Ω(m
√

log(n)).

101

Further, that the closeness property is maintained in Lemma 3.12, as shown below.

Lemma 3.12 (from Lemma 2.9). (A(t+1) maintains closeness) Suppose A(t) is (εt ,2)

near to A∗ with εt = O∗(1/ log(n)), and number of samples used in step t is p = Ω̃(ms2),

then with probability at least (1 − δ(t)
T − δ

(t)
β − δ

(t)
HW − δ

(t)
g), A(t+1) satisfies ‖A(t+1) −A∗‖ ≤

2‖A∗‖.

Therefore, the recovery of factor A∗, and the sparse-structured matrix X∗ suceeds

with probability δ(t)
NOODL = δ(t)

T +δ(t)
β +δHW +δ(t)

gi +δ(t)
g , where δ(t)

T = 2m exp(−C2/O∗(ε2
t)),

δ
(t)
β = 2s exp(−1/O(εt)), δ

(t)
HW = exp(−1/O(εt)), δ

(t)
gi = exp(−Ω(s)), δ(t)

g = (n+m)exp(−Ω(m√
log(n)).

Further, from Lemma 3.1, we have that the columns of S∗ are s = O(αβm) sparse

with probability (1− δ(t)
s), where δ(t)

s = min(J,K)exp(−ε2αβm/2(1 + ε/3)) for any ε > 0,

and that with probability at least (1−δp), the number of data samples p = L(1−(1−γ)m),

where δ(t)
p = exp(−ε2

2 L(1− (1−γ)m)) using Lemma 3.1. Furthermore, from Lemma 3.7,

we know that Algorithm 3 (which only relies on recovery of X∗) succeeds in recovering

B∗ and C∗ with probability (1− δ(t)
Bi

), where δ(t)
Bi

= exp(− ε2Jα
2(1+ε/3)) for any ε > 0.

Combining all these results we have that, Algorithm 2 succeeds with probability

(1− δalg), where δalg = δs + δ(t)
p + δ(t)

Bi
+ δNOODL. Hence, our main result.

A note on independent sample requirement: Since the IHT-based coefficient operates

independently on each column of Y (the non-zero columns of Z>1), the dependence

structure of S∗ does not affect this stage. For the dictionary update (in theory) we

only use the independent columns of Y, these can be inferred using J and K , and cor-

responding induced transposed Khatri-Rao structure. In practice however, we don’t

need to throw away any samples, this is purely to ensure that the independence as-

sumption holds for our finite sample analysis of the algorithm.

3.C Proof of Intermediate Results

Lemma 3.1 Ifm = Ω(log(min(J,K))/αβ) then with probability at least (1−δ(t)
s) the number

of non-zeros, s, in a column of S∗ are upper-bounded as s = O(αβm), where δ(t)
s = min(J,K)

exp(− ε2αβm
2(1+ε/3)) for any ε > 0.

Proof. of Lemma 3.1 Consider a column of the transposed Khatri-Rao structured ma-

trix S∗ defined as S∗ = (C∗ � B∗)>. Here, since the entries of factors B∗ and C∗ are

102

independently non-zero with probability α and β, respectively, each entry of a column

of S∗ is independently non-zero with probability γ = αβ, i.e., 1|S∗ij |>0 ∼ Bernoulli(γ). As

a result, the number of non-zero elements in a column of S∗ are Binomial(m,γ).

Now, let sij be the indicator for the (i, j) element of S∗ being non-zero, defined as

sij = 1|S∗ij |>0.

Then, the expected number of non-zeros (sparsity) in the j-th column of S∗ are given

by

E[
∑m
i=1sij] = γm.

Since, γ can be small, we use Lemma 3.13(a) (McDiarmid, 1998) to derive an upper

bound on the sparsity for each each column as

Pr[
∑m
i=1 sij ≥ (1 + ε)γm] ≤ exp(− ε2γm

2(1+ε/3)).

for any ε > 0. Union bounding over L = min(J,K) independent columns of S∗.

Pr[
⋃L
j=1(

∑m
i=1 sij ≤ (1 + ε)γm)] ≥ 1−Lexp(− ε2γm

2(1+ε/3)).

Therefore, we conclude that if m = Ω(log(L)/γ) then with probability (1 − δs) the ex-

pected number of non-zeros in a column of S∗ are O(γm), where δs = Lexp(− ε2γm
2(1+ε/3)).

Lemma 3.2 For any ε > 0 suppose we have

L ≥ 2
(1−(1−γ)m)ε2 log(1

δ
(t)
p

),

for L = min(J,K) and γ = αβ, then with probability at least (1− δp),

p = L(1− (1−γ)m),

where δ(t)
p = exp(−ε2

2 L(1− (1−γ)m)).

Proof. of Lemma 3.2 We begin by evaluating the probability that a column of S∗ has

a non-zero element. Let sij be the indicator for the (i, j) element of S∗ being non-zero,

103

defined as

sij = 1|S∗ij |>0.

Further, let wj denote the number of non-zeros in the j-th column of S∗, defined as

wj =
∑m
i=1 sij .

Since each element of a column of S∗ is non-zero with probability γ , the probability

that the j-th column of S∗ is an all zero vector is,

Pr[wj = 0] = (1−γ)m.

Therefore, the probability that the j-th column of S∗ has at least one non-zero element

is given by

Pr[wj > 0] = 1− (1−γ)m. (3.11)

Now, we are interested in the number of columns with at least one non-zero element

among the L = min(J,K) independent columns of S, which we denote by p. Specifically,

we analyze the following sum

p =
∑L
j=11wj>0.

Next, using (3.11) E[p] = L(1− (1−γ)m). Applying the result stated Lemma 3.13 (b),

Pr[
L∑
j=1

1wj ≤ (1− ε)E[p]] ≤ exp(−ε
2E[p]

2) := δ(t)
p .

Therefore, if for any ε > 0 we have

L ≥ 2
(1−(1−γ)m)ε2 log(1

δ
(t)
p

)

then with probability at least (1−δp), p = L(1−(1−γ)m), where δ(t)
p = exp(−ε2

2 L(1− (1−γ)m)).

Lemma 3.7 Suppose the input Ŝ to Algorithm 3 is entry-wise ζ close to S∗, i.e., |̂S∗ij −

104

S∗ij | ≤ ζ and has the correct signed-support as S∗. Then with probability atleast (1 −

δ
(t)
IHT − δ

(t)
Bi

), both B̂i and Ĉi have the correct support, and
∥∥∥∥ B∗i
‖B∗i‖
−πi

B̂i
‖B̂i‖

∥∥∥∥ = O(ζ2) and∥∥∥∥ C∗i
‖C∗i‖
−πi

Ĉi

‖Ĉi‖

∥∥∥∥ = O(ζ2), where δ(t)
IHT = 2m exp(− C2

O∗(ε2
t)

)+2s exp(− 1
O(εt)

) for ‖A(t)
i −A∗i‖ ≤ εt,

and δ(t)
Bi

= exp(− ε2Jα
2(1+ε/3)) for any ε > 0.

Proof. of Lemma 3.7 The Iterative Hard Thresholding (IHT) results in an estimate of

X∗ which has the correct signed support (Chapter 2) (Rambhatla et al., 2019). As a

result, putting back the columns of X̂ at the respective non-zero column locations of

Z>1 , we arrive at the estimate Ŝ of S∗, which has the correct signed-support, we denote

this estimate by Ŝ. To recover the estimates B̂ and Ĉ, we use a SVD-based procedure.

Specifically, we note that,

S∗>i,: = C∗i ⊗B∗i = vec(B∗iCi
∗>)

As a result, the left and right singular vectors of the rank-1 matrix B∗iC
∗>
i are the

columns B∗i and C∗i , respectively (up to scaling).

Let M(i) denote the J × K matrix formed by reshaping the vector Ŝ>i,:. We choose

the appropriately scaled left and right singular vectors corresponding to the largest

singular value of M(i) as our estimates B̂i and Ĉi , respectively.

First, notice that since Ŝ>i,: has the correct sign and support (due to Lemma 3.4),

the support of matrix M(i) is the same as B∗iC
∗>
i . As a result, the estimates B̂i and Ĉi

have the correct support, and the error is only due to the scaling ambiguity on the

support. This is due to the fact that the principal singular vectors (u and v) align with

the sparsity structure of M(i) as they solve the following maximization problem also

known as variational characterization of svd,

σ2
1 = max

‖u‖=1
u>M(i)M(i)>u = max

‖v‖=1
v>M(i)>M(i)v,

where σ1 denotes the principal singular value. Therefore, since M(i) has the correct

sparsity structure as B∗iCi
∗> the resulting u and v have the correct supports as well.

Here, u and v can be viewed as the normalized versions of B̂i and Ĉi , respectively, i.e.,

u = B̂i/‖B̂i‖ and v = Ĉi/‖Ĉi‖.
Let E = M(i) − B∗iC

∗>
i , now since |̂Sij − S∗ij | ≤ ζ and, from Lemma 3.4) Ŝ(i, :) has

the correct signed-support with probability (1− δ(t)
IHT), where δ(t)

IHT = 2m exp(− C2

O∗(ε2
t)

) +

105

2s exp(− 1
O(εt)

), and further using Claim 11, we have that the expected number of non-

zeros in Ŝ(i, :) are JKαβ, with probability atleast (1 − δ(t)
Bi

), where δ(t)
Bi

= exp(− ε2Jα
2(1+ε/3))

for some ε > 0, we have

‖E‖ ≤ ‖E‖F ≤
√
JKαβζ,

Then, using the result in Yu et al. (2014), and noting that σ1(BiC
>
i) = ‖Bi‖‖Ci‖ and

letting πi ∈ {−1,1} (to resolve the sign ambiguity), we have that∥∥∥∥ B∗i
‖B∗i‖
−πiu

∥∥∥∥ =
∥∥∥∥ B∗i
‖B∗i‖
−πi

B̂i
‖B̂i‖

∥∥∥∥ ≤ 23/2(2‖Bi‖‖Ci‖+
√
JKαβζ)

√
JKαβζ

‖Bi‖2‖Ci‖2
.

Next, since E[B2
ij |(i, j) ∈ supp(B)] = 1 as per our distributional assumptions Def.3.3, we

have

E[‖B∗ji‖
2] = E[B∗2ji |(j, i) ∈ supp(B∗)]Pr[(j, i) ∈ supp(B∗)] + 0.Pr[(j, i) < supp(B∗)] = α

Similarly, E[‖C∗ji‖
2] = β. Substituting,

∥∥∥∥ B∗i
‖B∗i‖
−πi

B̂i
‖B̂i‖

∥∥∥∥ ≤ 23/2(2
√
JKαβ+

√
JKαβζ)

√
JKαβζ

JKαβ = O(ζ2).

Claim 11. Suppose J = Ω(1
α)), then with probability at least (1− δ(t)

Bi
),

∑JK
j=1 supp(S∗(i, j)) = JKαβ,

where δ(t)
Bi

= exp(− ε2Jα
2(1+ε/3)) for any ε > 0.

Proof. of Claim 11 In this lemma we establish an upper-bound on the number of non-

zeros in a row of S∗. The i-th row of S∗ can be written as vec(B∗i C
∗>
i).

Since each element of matrix B∗ and C∗ are independently non-zero with probabil-

ities α and β, the number of non-zeros in a column B∗i of B∗ are binomially distributed.

Let sj be the indicator for the j-th element of B∗i being non-zero, defined as

si = 1|B∗(j,i)|>0.

Then, the expected number of non-zeros (sparsity) in the i-th column of B∗ are given

106

by

E[
∑

supp(B∗i)] = E[
∑J
j=1sj] = Jα.

Since, α can be small, we use Lemma 3.13(a) (McDiarmid, 1998) to derive an upper

bound on the sparsity for each each column as

Pr[
∑J
j=1 sj ≥ (1 + ε)Jα] ≤ exp(− ε2Jα

2(1+ε/3)) := δ(t)
Bi
. (3.12)

for any ε > 0.

Now we turn to the number of non-zeros in S∗i = vec(B∗i C
∗>
i). We first note that

the j-th column of B∗iC
∗>
i is given by C(j, i)∗B∗i . This implies that the j-th column can

be all-zeros if C(j, i)∗ = 0. As a result, the expected number of non-zeros in the j-th

column of B∗iC
∗>
i can be written as,

E[
∑

supp(C∗jiB
∗
i)]

= E[
∑

supp(C∗jiB
∗
i)|C

∗
ji , 0]Pr[C∗ji , 0] + E[

∑
supp(C∗jiB

∗
i)|C

∗
ji = 0]Pr[C∗ji = 0]

= E[
∑

supp(C∗jiB
∗
i)|C

∗
ji , 0]Pr[C∗ji , 0] = E[

∑
supp(B∗i)]Pr[C∗ji , 0].

Now, from (3.12), we have that if we choose J = Ω(1
α)) with probability atleast (1−δ(t)

Bi
),

there are Si = Jα non-zeros in a column of B∗. Further since, Pr[C∗ji , 0] = β, we have

that with probability atleast (1− δ(t)
Bi

),

E[
∑

supp(C∗jiB
∗
i)] = Jαβ.

Furthermore, since there are K columns in B∗iC
∗>
i , with probability atleast (1− δ(t)

Bi
),

E[
∑

supp(vec(B∗iC
∗>
i)] = E[

∑JK
j=1 supp(S∗(i, j))] = JKαβ.

3.D Additional Theoretical Results

Lemma 3.13. Relative Chernoff McDiarmid (1998) Let random variables w1, . . . ,w` be

independent, with 0 ≤ wi ≤ 1 for each i. Let Sw =
∑`
i=1wi , let ν = E(Sw) and let p = ν/`,

107

then for any ε > 0,

(a) Pr[Sw − ν ≥ εν] ≤ exp(−ε2ν/2(1 + ε/3)),

(b) Pr[Sw − ν ≤ εν] ≤ exp(−ε2ν/2).

Lemma 3.14 (Specialized Theorem 4 in Yu et al. (2014) for singular vectors). Given M,

M̃ ∈Rm×n, where M̃ = M+E and the corresponding SVD of M = UΣV> and M̃ = ŨΣ̃Ṽ>,

the sine of angle between the principal left (and right) singular vectors of matrices M

and M̃ is given by

sin Θ(U1,Ũ1) ≤ 2(2σ1+‖E‖2)(min(‖E‖2,‖E‖F)
σ2

1
,

where σ1 is the principal singular value corresponding to U1. Furthermore, there exists

π ∈ −1,1 such that

‖U1 −πŨ1‖ ≤
23/2(2σ1+‖E‖2)(min(‖E‖2,‖E‖F)

σ2
1

.

3.E Experimental Set-up and Additional Experimental Results

In this appendix we detail the specifics of the experiments presented in Section 3.6. In

addition, we also presented the simulation results corresponding to α = β = {0.005,0.01,

0.05} are shown in Table 3.E.2, 3.E.3, and 3.E.4, respectively.

3.E.1 Experimental Set-up

We analyze the performance of the algorithm across different choices of tensor dimen-

sions (J,K) for a fixed n = 300, its rank(m) and the sparsity of factors B∗ and C∗ con-

trolled by parameters (α,β), for recovery of the constituent factors using three Monte-

Carlo runs. For each of these runs, we analyze the recovery performance across three

choices of dimensions J = K = {100, 300, 500}, five choices of rank m = {50,150,300,

450,600}, and three choices of the sparsity parameters α = β = {0.005,0.01,0.05}.
Parameters Setting – We set TensorNOODL specific IHT parameters ηx = 0.2 and τ =

0.1 for all experiments. As recommended by our main result, the dictionary step-size

parameter ηA is set proportional to m/k. Since TensorNOODL, Arora(b), and Arora(u)

all rely on an approximate gradient descent strategy for dictionary update, we use

108

the same step-size ηA for a fair comparison. Specifically, the dictionary update step-

size parameter (ηA) is set to be the same for TensorNOODL, Arora(b), and Arora(u)

depending upon the choice of rankm, and probabilities (α,β), according to assumption

A.5 and Table 3.E.1. Note that Mairal does not employ such a parameter.

Table 3.E.1: Choosing the step-size (ηA) for the dictionary update step. The dictionary up-
date step-size parameter (ηA) is set to be the same for TensorNOODL, Arora(b), and Arora(u)

depending upon the choice of rank m, and probabilities (α,β), according to assumption A.5.

Rank, m Step-size for
dictionary update,

ηA

Notes

50 20 For (α,β) = 0.005, we
use ηA = 5

150 40 –
300 40 –
450 50 –
600 50 –

Data Generation – For each experiment we draw entries of the dictionary factor matrix

A∗ ∈ Rn×m from N (0,1), and normalize its columns to be unit-norm. To form A(0) in

accordance with A.2, we perturb A∗ with random Gaussian noise and normalized its

columns, such that it is column-wise 2/ log(n) away from A∗ in `2 norm sense.

To form the sparse factors B∗ and C∗, we assign their entries to the support indepen-

dently with probability α and β, respectively, and then draw the values on the support

from the Rademacher distribution.

Evaluation Metrics – We run all algorithms till one of them achieves target tolerance

(error in the factor A, εT) of 10−10, and report the number of iterations T for each

experiment. Note that, in all cases TensorNOODL achieves the tolerance first, and in

some cases with the algorithms considered in the analysis. Next, since recovery of A∗

and X∗ is vital for the success of the tensor factorization task, we report the relative

Frobenius error for each of these matrices, i.e., for a recovered matrix M̂, we report

‖M̂−M∗‖F/‖M∗‖F.

In addition, since the dictionary learning task focuses on recovering the sparse

matrix X∗, it is agnostic to the transposed Khatri-Rao structure S∗. As a result, for

recovering the sparse factors B∗ and C∗ is crucial for exact support recovery of X∗.

Therefore, we report if the support has been exactly recovered or not.

Reproducible Results – We fix the random seeds (to 42,26, and 91) for each Monte

Carlo run to ensure reproducibility of the results shown in this work. The experiments

109

were run on a HP Haswell Linux Cluster. The processing of data samples for the sparse

coefficients (X̂) was split across 20 workers (cores), allocated a total of 200 GB RAM.

For Arora(b), Arora(u), and Mairal, the coefficient recovery was switched between

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009),

an accelerated proximal gradient descent algorithm, or a stochastic-version of Iter-

ative Shrinkage-Thresholding Algorithm (ISTA) (Chambolle et al., 1998; Daubechies

et al., 2004) depending upon the size of the data samples available for learning (see

the discussion of the coefficient update step below); see also Beck and Teboulle (2009)

for details. We have also made the code available as part of this submission.

Sparse Factor Recovery Considerations – In Arora et al. (2015), the authors present

two algorithms – a simple algorithm with a sample complexity of Ω̃(ms) which incurs

an estimation bias (Arora(b)), and a more involved variant for unbiased estimation

of the dictionary whose sample complexity was not established Arora(u). However,

these algorithms do not provide guarantees on, or recover the sparse coefficients. As a

result, we need to adopt an additional `1 minimization based coefficient recovery step.

Further, the algorithm proposed by Mairal et al. (2009) can be viewed as a variant of

regularized alternating least squares algorithm which employs `1 regularization for

the recovery of the transposed Khatri-Rao structured matrix.

To form the coefficient estimates for Arora(b), Arora(u), and Mairal ‘09 we solve

the Lasso (Tibshirani, 1996) program using a stochastic-version of Iterative Shrinkage-

Thresholding Algorithm (ISTA) (Chambolle et al., 1998; Daubechies et al., 2004) (or

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009) if

p is small) and report the best estimate (in terms of relative Frobenius error) across

10 values of the regularization parameter. The stochastic projected gradient descent

is necessary to make coefficient recovery tractable since size of X grows quickly with

(α,β). Coefficient estimation step is still the slowest step in these algorithms since

one has to scan through different values of the regularization parameters. In contrast,

TensorNOODL does not require such an expensive tuning procedure, while providing

recovery guarantees on the recovered coefficients.

Note that in practice ISTA and FISTA can be parallelized as well, but tuning of the

regularization parameters is still involves (an expensive) grid search. Arguably even if

each step of these algorithms (ISTA and FISTA) take the same amount of time as that

of TensorNOODL, the search over, say 10, values of the regularization parameters will

still be take 10 times the time. As a result, TensorNOODL is an attractive choice as it

110

does not involve an expensive tuning procedure.

3.E.2 Additional Results

Table 3.E.2, 3.E.3, and 3.E.4 show the results of the analysis averaged across the three

Monte Carlo runs, for α = β = {0.005,0.01,0.05}, respectively. We note that for every

choice of (J,K), m, and (α,β), TensorNOODL emerges as significantly superior to the

related techniques. In addition, its support recovery performance is specifically inter-

esting since it is crucial for recovery of the sparse factors B∗ and C∗ via Algorithm 3.

111

Table 3.E.2: Tensor factorization results α,β = 0.005 averaged across 3 trials. Here, T (supp(X̂)) field shows the number of iterations T
to reach the target tolerance, while the categorical field, supp(X̂) indicates if the support of the recovered X̂ matches that of X∗ (Y) or
not (N).

(J,K) Method
m = 50 m = 150 m = 300 m = 450 m = 600

‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?) ‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?) ‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?) ‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?) ‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?)

100

NOODL 5.38e-11 2.38e-16 245 (Y) 7.04e-11 2.24e-16 257 (Y) 5.48e-11 5.14e-13 240 (Y) 7.82e-11 1.79e-12 257 (Y) 8.30e-11 6.39e-13 300 (Y)
Arora(b) 1.87e-06 1.14e-05 245 (N) 2.09e-03 1.41e-03 257 (N) 2.70e-03 2.41e-03 240 (N) 3.80e-03 3.20e-03 257 (N) 2.80e-03 3.06e-03 300 (N)
Arora(u) 6.78e-08 1.14e-05 245 (N) 8.94e-05 7.38e-05 257 (N) 1.72e-04 8.76e-05 240 (N) 3.06e-04 1.82e-04 257 (N) 2.52e-04 2.76e-04 300 (N)
Mairal 4.40e-03 2.00e-03 245 (N) 4.90e-03 6.87e-03 257 (N) 6.00e-03 5.10e-03 240 (N) 7.20e-03 6.90e-03 257 (N) 8.27e-03 8.07e-03 300 (N)

300

NOODL 5.72e-11 1.13e-12 61 (Y) 6.74e-11 5.44e-13 89 (Y) 9.10e-11 1.27e-12 168 (Y) 9.43e-11 1.56e-12 201 (Y) 9.50e-11 1.63e-12 265 (Y)
Arora(b) 2.13e-03 2.86e-03 61 (N) 5.90e-04 4.50e-04 89 (N) 1.00e-03 1.10e-03 168 (N) 9.77e-04 1.04e-03 201 (N) 1.03e-03 9.36e-04 265 (N)
Arora(u) 2.04e-04 2.70e-04 61 (N) 3.82e-05 4.26e-05 89 (N) 1.04e-04 1.09e-04 168 (N) 1.42e-04 1.68e-04 201 (N) 1.27e-04 1.23e-04 265 (N)
Mairal 2.05e-01 2.28e-01 61 (N) 1.19e-02 1.09e-02 89 (N) 1.07e-02 8.40e-03 168 (N) 1.47e-02 1.39e-02 201 (N) 9.40e-03 1.05e-02 265 (N)

500

NOODL 5.49e-11 2.34e-16 50 (Y) 8.15e-11 1.25e-12 76 (Y) 9.27e-11 1.41e-12 160 (Y) 9.77e-11 1.60e-12 196 (Y) 9.72e-11 1.84e-12 264 (Y)
Arora(b) 1.11e-04 1.34e-04 50 (N) 5.75e-04 5.60e-04 76 (N) 6.32e-04 2.71e-03 160 (N) 5.99e-04 5.30e-03 196 (N) 6.04e-04 6.37e-03 264 (N)
Arora(u) 9.75e-06 1.50e-05 50 (N) 4.30e-05 4.73e-05 76 (N) 5.55e-05 2.28e-03 160 (N) 5.91e-05 5.30e-03 196 (N 8.08e-05 6.37e-03 264 (N)
Mairal 1.23e-01 1.10e-01 50 (N) 1.73e-02 1.20e-02 76 (N) 1.44e-02 5.99e-02 160 (N) 3.22e-01 2.87e-01 196 (N) 2.46e-02 1.70e-01 264 (N)

112

Table 3.E.3: Tensor factorization results α,β = 0.01 averaged across 3 trials. Here, T (supp(X̂)) field shows the number of iterations T to
reach the target tolerance, while the categorical field, supp(X̂) indicates if the support of the recovered X̂ matches that of X∗ (Y) or not
(N).

(J,K) Method
m = 50 m = 150 m = 300 m = 450 m = 600

‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?) ‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?) ‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?) ‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?) ‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?)

100

NOODL 5.50e-11 5.66e-13 91 (Y) 7.59e-11 5.28e-13 112 (Y) 4.34e-11 1.62e-12 190 (Y) 9.48e-11 1.78e-12 211 (Y) 7.27e-11 1.94e-12 279 (Y)
Arora(b) 3.93e-03 5.80e-03 91 (N) 2.61e-03 1.58e-03 112 (N) 2.70e-03 3.00e-03 190 (N) 3.30e-03 4.00e-03 211 (N) 3.40e-03 3.37e-03 279 (N)
Arora(u) 4.35e-04 6.77e-04 91 (N) 6.87e-04 1.05e-04 112 (N) 2.98e-04 3.04e-04 190 (N) 8.55e-04 1.27e-03 211 (N) 6.83e-04 6.49e-04 279 (N)
Mairal 4.03e-02 1.26e-02 91 (N) 1.34e-02 1.25e-02 112 (N) 1.18e-02 1.25e-02 190 (N) 8.00e-03 6.60e-03 211 (N) 8.77e-03 9.93e-03 279 (N)

300

NOODL 6.78e-11 5.75e-13 51 (Y) 6.35e-11 1.54e-12 76 (Y) 8.64e-11 2.06e-12 158 (Y) 9.43e-11 2.92e-12 192 (Y) 9.33e-11 2.54e-12 252 (Y)
Arora(b) 4.08e-04 4.76e-04 51 (N) 1.03e-03 1.08e-03 76 (N) 1.04e-03 1.17e-02 158 (N) 1.00e-03 1.25e-02 192 (N) 1.13e-03 1.54e-02 252 (N)
Arora(u) 1.99e-05 1.46e-05 51 (N) 1.03e-04 9.59e-05 76 (N) 2.17e-04 1.17e-02 158 (N) 2.22e-04 1.25e-02 192 (N) 2.69e-04 1.54e-02 252 (N)
Mairal 1.64e-01 1.63e-01 51 (N) 2.61e-02 2.64e-02 76 (N) 2.81e-02 1.58e-01 158 (N) 1.39e-01 2.03e-01 192 (N) 1.92e-02 1.83e-01 252 (N)

500

NOODL 6.92e-11 8.78e-13 46 (Y) 8.77e-11 1.77e-12 77 (Y) 9.35e-11 2.12e-12 156 (Y) 9.60e-11 2.41e-12 186 (Y) 9.82e-11 2.66e-12 249 (Y)
Arora(b) 3.48e-04 3.28e-04 46 (N) 5.42e-04 6.40e-03 77 (N) 5.69e-04 2.41e-03 156 (N) 6.49e-04 1.20e-02 186 (N) 6.55e-04 1.42e-02 249 (N)
Arora(u) 2.56e-05 3.70e-05 46 (N) 4.81e-05 6.40e-03 77 (N) 1.08e-04 9.30e-03 156 ((N) 1.39e-04 1.20e-02 186 (N) 1.55e-04 1.42e-02 249 (N)
Mairal 1.56e-01 1.53e-01 46 (N) 5.28e-02 1.30e-01 77 (N) 2.53e-02 1.57e-01 156 (N) 6.38e-02 1.54e-01 186 (N) 1.74e-02 1.79e-01 249 (N)

113

Table 3.E.4: Tensor factorization results α,β = 0.05 averaged across 3 trials. Here, T (supp(X̂)) field shows the number of iterations T to
reach the target tolerance, while the categorical field, supp(X̂) indicates if the support of the recovered X̂ matches that of X∗ (Y) or not
(N).

(J,K) Method
m = 50 m = 150 m = 300 m = 450 m = 600

‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?) ‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?) ‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?) ‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?) ‖A∗−A(T)‖F
‖A∗‖F

‖X∗−X(T)‖F
‖X∗‖F

T (supp(X̂)?)

100

NOODL 8.03e-11 3.17e-12 46 (Y) 7.71e-11 4.92e-12 63 (Y) 9.66e-11 6.01e-12 110 (Y) 8.92e-11 7.29e-12 115 (Y) 8.71e-11 1.06e-11 131 (Y)
Arora(b) 2.90e-03 3.00e-03 46 (N) 4.60e-03 3.39e-02 63 (N) 5.50e-03 4.89e-02 110 (N) 7.50e-03 6.17e-02 115 (N) 9.16e-03 7.36e-02 131 (N)
Arora(u) 8.97e-04 8.48e-04 46 (N) 1.90e-03 3.40e-02 63 (N) 2.80e-03 4.90e-02 110 (N) 4.40e-03 6.19e-02 115 (N) 5.70e-03 7.40e-02 131 (N)
Mairal 1.57e-01 1.67e-01 46 (N) 3.63e-02 1.54e-01 63 (N) 2.32e-02 1.99e-01 110 (N) 8.79e-02 2.27e-01 115 (N) 2.81e-02 2.56e-01 131 (N)

300

NOODL 6.51e-11 3.27e-12 42 (Y) 9.05e-11 5.61e-12 60 (Y) 9.10e-11 7.01e-12 107 (Y) 9.20e-11 8.41-12 110 (Y) 8.49e-11 9.03e-12 128 (Y)
Arora(b) 1.40e-03 1.95e-02 42 (N) 2.50e-03 3.55e-02 60 (N) 3.20e-03 5.04e-02 107 (N) 4.00e-03 6.16e-02 110 (N) 4.90e-03 7.39e-02 128 (N)
Arora(u) 2.48e-04 1.95e-02 42 (N) 6.35e-04 3.56e-02 60 (N) 9.48e-04 5.05e-02 107 (N) 1.40e-03 6.18e-02 110 (N) 1.83e-03 7.42e-02 128 (N)
Mairal 6.24e-02 1.11e-01 42 (N) 3.05e-02 1.59e-01 60(N) 1.91e-02 2.09e-01 107 (N) 4.85e-02 2.19e-01 110 (N) 2.32e-02 2.63e-01 128 (N)

500

NOODL 7.72e-11 3.86e-12 42 (Y) 8.44e-11 5.63e-12 59 (Y) 9.64e-11 7.34e-12 106 ((Y) 8.95e-11 8.21e-12 109 (Y) 9.06e-11 9.29e-12 127 (Y)
Arora(b) 1.30e-03 2.02e-02 42 (N) 2.10e-03 3.55e-02 59 (N) 2.80e-03 5.03e-02 106 (N) 3.60e-03 6.21e-02 109 (N) 4.40e-03 7.40e-02 127 (N)
Arora(u) 1.39e-04 2.02e-02 42 (N) 3.82e-04 3.56e-02 59 (N) 5.66e-04 5.05e-02 106 (N) 8.54e-04 6.23e-02 109 (N) 1.10e-03 7.44e-02 127 (N)
Mairal 6.12e-02 1.10e-01 42 (N) 2.93e-02 1.58e-01 59 (N) 1.80e-02 2.11e-01 106 (N) 4.62e-02 2.20e-01 109 (N) 4.05e-02 2.56e-01 127 (N)

Part II

Algorithm-Agnostic Matrix

Demixing

114

Chapter 4

Dictionary-based Generalization of

Robust PCA

4.1 Overview

We consider the decomposition of a data matrix assumed to be a superposition of a

low-rank matrix and a component which is sparse in a known dictionary, using a con-

vex demixing method. We consider two sparsity structures for the sparse factor of

the dictionary sparse component, namely entry-wise and column-wise sparsity, and

provide a unified analysis, encompassing both undercomplete and the overcomplete

dictionary cases, to show that the constituent matrices can be successfully recovered

under some relatively mild conditions on incoherence, sparsity, and rank. We cor-

roborate our theoretical results by presenting empirical evaluations in terms of phase

transitions in rank and sparsity, in comparison to related techniques. Investigation of

a specific application in hyperspectral imaging is included in Chapter 5.

4.2 Introduction

Leveraging structure of a given dataset is at the heart of all machine learning and data

analysis tasks. A priori knowledge about the structure often makes the problem well-

posed, leading to improvements in the solutions. Perhaps the most common of these,

one that is often encountered in practice, is approximate low-rankness of the dataset,

which is exploited by the popular principal component analysis (PCA) (Jolliffe, 2002).

115

116

The low-rank structure encapsulates the model assumption that the data in fact spans

a lower dimensional subspace than the ambient dimension of the data. However, in

a number of applications, the data may not be inherently low-rank, but may be de-

composed as a superposition of a low-rank component, and a component which has a

sparse representation in a known dictionary. This scenario is particularly interesting in

target identification applications (Rambhatla et al., 2017b; Li et al., 2018b), where the a

priori knowledge of the target signatures (dictionary), can be leveraged for localization.

In this work, we analyze a matrix demixing problem where a data matrix M ∈
R
n×m is formed via a superposition of a low-rank component L ∈ Rn×m of rank-r for

r < min(n,m), and a dictionary sparse part DS ∈ Rn×m. Here, the matrix D ∈ Rn×d is

an a priori known dictionary, and S ∈ R
d×m is an unknown sparse coefficient matrix.

Specifically, we will study the following model for M:

M = L + DS, (4.1)

and identify the conditions under which the components L and S can be successfully

recovered given M and D by solving appropriate convex formulations.

We consider the demixing problem described above for two different sparsity mod-

els on the matrix S. First, we consider a case where S has at most se total non-zero

entries (entry-wise sparse case), and second where S has sc non-zero columns (column-

wise sparse case). To this end, we develop the conditions under which solving

min
L,S
‖L‖∗ +λe‖S‖1 s.t. M = L + DS, (D-RPCA(E))

for the entry-wise sparsity case, and

min
L,S
‖L‖∗ +λc‖S‖1,2 s.t. M = L + DS, (D-RPCA(C))

for the column-wise sparse case, will recover L and S for regularization parameters

λe ≥ 0 and λc ≥ 0, respectively, given the data M and the dictionary D. Here, the

known dictionary D can be overcomplete (fat, i.e., d > n) or undercomplete (thin, i.e.,

d ≤ n).

Here, “D-RPCA” refers to “Dictionary based Robust Principal Component Analy-

sis”, while the qualifiers “E” and “C” indicate the entry-wise and column-wise spar-

sity patterns, respectively. In addition, ‖.‖∗, ‖.‖1, and ‖.‖1,2 refer to the nuclear norm,

117

`1- norm of the vectorized matrix, and `1,2 norm (sum of the `2 norm of the columns),

respectively, which serve as convex relaxations of rank, sparsity, and column-wise spar-

sity inducing optimization, respectively.

These two types of sparsity patterns capture different structural properties of the

dictionary sparse component. The entry-wise sparsity model allows individual data

points to span low-dimensional subspaces, still allowing the dataset to span the en-

tire space. In case of the column-wise sparse coefficient matrix S, the component DS

is also column-wise sparse. Therefore, this model effectively captures the structured

(which depend upon the dictionary D) corruptions in the otherwise low-rank struc-

tured columns of data matrix M. Note that the non-zero columns of S are not restricted

to be sparse in the column-wise sparsity model.

4.2.1 Background

A wide range of problems can be expressed in the form described in (4.1). Perhaps the

most celebrated of these is principal component analysis (PCA) (Jolliffe, 2002), which

can be viewed as a special case of (4.1), with the matrix D set to zero. Next, in the ab-

sence of the component L, the problem reduces to that of sparse recovery (Natarajan,

1995; Donoho and Huo, 2001b; Candès and Tao, 2005); See Rauhut (2010) and ref-

erences therein for an overview of related works. Further, the popular framework of

Robust PCA tackles a case when the dictionary D is an identity matrix (Candès et al.,

2011; Chandrasekaran et al., 2011); variants include Zhou et al. (2010); Ding et al.

(2011); Wright et al. (2013); Chen et al. (2013).

The model described in (4.1) is also closely related to the one considered in Mardani

et al. (2013), which explores the overcomplete dictionary setting with applications

to detection of network traffic anomalies. However, the analysis therein applies to a

case where the dictionary D is overcomplete with orthogonal rows, and the coefficient

matrix S has a small number of non-zero elements per row and column, which may be

restrictive assumptions in some applications.

In particular, for the entry-wise case, the model shown in (4.1) is propitious in a

number of applications. For example, it can be used for target identification in hyper-

spectral imaging (Rambhatla et al., 2017b; Li et al., 2018b), and in topic modeling ap-

plications to identify documents with certain properties, on similar lines as Min et al.

(2010). We analyze and demonstrate the application of this model for a hyperspectral

demixing task in an application extension of this work in Rambhatla et al. (2018b).

118

Further, in source separation tasks, a variant of this model was used in singing voice

separation in Huang et al. (2012); Sprechmann et al. (2012). In addition, we can also

envision source separation tasks where L is not low-rank, but can in turn be modeled

as being sparse in a known (Starck et al., 2005) or an unknown (Rambhatla and Haupt,

2013b) dictionary.

For the column-wise setting, model (4.1) is also closely related to outlier identifi-

cation (Xu et al., 2010; Li and Haupt, 2015a,b; Rahmani and Atia, 2015), which is mo-

tivated by a number of contemporary “big data” applications. Here, the sparse matrix

S, also called outliers in this regime, may be of interest and can be used in identifying

malicious responses in collaborative filtering applications (Mehta and Nejdl, 2008),

finding anomalous patterns in network traffic (Lakhina et al., 2004) or estimating vi-

sually salient regions of images (Itti et al., 1998; Harel et al., 2006; Liu et al., 2007).

4.2.2 Our Contributions

As described above, we propose and analyze a dictionary based generalization of ro-

bust PCA as shown in (4.1). Here, we consider two distinct sparsity patterns of S, i.e.,

entry-wise and column-wise sparse S, arising from different structural assumptions on

the dictionary sparse component. Our specific contributions for each sparsity pattern

are summarized below.

Entry-wise case: We make the following contributions towards guaranteeing the re-

covery of L and S via the convex optimization problem in D-RPCA(E). First, we ana-

lyze the thin case (i.e. d ≤ n), where we assume that the matrix S has at most se = O(mr)

non-zero elements globally, i.e., ‖S‖0 ≤ se Next, for the fat case, we first extend the

analysis presented in Mardani et al. (2013) to eliminate the orthogonality constraint

on the rows of the dictionary D. Further, we relax the sparsity constraints required by

Mardani et al. (2013) on rows and columns of the sparse coefficient matrix S, to study

the case when ‖S‖0 ≤ se with at most k = O(d/ log(n)) non-zero elements per column

(Rambhatla et al., 2016b). Hence, we provide a unified analysis for both the thin and

the fat case, making the model (4.1) amenable to a wide range of applications.

Column-wise case: We propose and analyze a dictionary based generalization of ro-

bust PCA, specifically Outlier Pursuit (OP) (Xu et al., 2010), wherein the coefficient

matrix S admits a column sparse structure which can be viewed as “outliers”; see also

Li et al. (2018b).

119

Note that, in this case there is an inherent ambiguity regarding the recovery of

the true component pair (L,S) corresponding to the low-rank part and the dictionary

sparse component, respectively. Specifically, any pair (L0,S0) satisfying M = L0+DS0 =

L + DS, where L0 and L have the same column space, and S0 and S have the identical

column support, is a solution of D-RPCA(C). To this end, we develop the sufficient

conditions under which solving the convex optimization in D-RPCA(C) recovers the

column space of the low-rank component L, while identifying the outlier columns of

S. Here, the difference between D-RPCA(C) and OP being the inclusion of the known

dictionary (Xu et al., 2010).

Next, we demonstrate how the a priori knowledge of the dictionary D helps us

identify the corrupted columns via phase transitions in rank and sparsity for recovery

of the outlier columns. Specifically, we show that in comparison to OP, D-RPCA(C)

works for potentially higher ranks of L, when sc is a fixed proportion of m.

The thin dictionary case – an interesting result: As suggested by Mardani et al.

(2013), when the dictionary is thin, i.e., d < n, one can envision a pseudo-inversed

based technique, wherein we pre-multiply both sides in (4.1) with the Moore-Penrose

pseudo-inverse D† ∈ Rd×n, i.e., D†D = I (this is not applicable for the fat case due to

the non-trivial null space of the pseudo-inverse). This operation leads to a formulation

which resembles the robust PCA (RPCA) (Candès et al., 2011; Chandrasekaran et al.,

2011) model for the entry-wise case and Outlier Pursuit (OP) (Xu et al., 2010) for the

column-wise case, i.e.,

D†M = D†L + S, (RPCA†) D†M = D†L + S. (OP†)

An interesting finding of our work is that although this transformation algebraically

reduces the entry-wise and column-wise sparsity cases to Robust PCA and OP settings,

respectively, the specific model assumptions of Robust PCA and OP may not hold for

all choices of dictionary size d and rank r. Specifically, we find that in cases where

d < r, this pre-multiplication may not lead to a “low-rank” D†L. This suggests that the

notion of “low” or “high” rank is relative to the maximum possible rank of D†L, which

in this case is min(d,r). Therefore, if d < r, D†L can be full-rank, and the low-rank

assumptions of RPCA and OP may no longer hold. As a result, these two models (the

pseudo inversed case and the current work) cannot be used interchangeably for the

thin dictionary case. We corroborate these via experimental evaluations presented in

120

Section 4.5.

The rest of the chapter is organized as follows. We formalize the problem, intro-

duce the notation, and describe various considerations on the structure of the com-

ponent matrices in Section 4.3. In Section 4.4, we present our main theorems for the

entry-wise and column-wise cases along with discussion on the implication of the re-

sults, followed by an outline of the analysis in Section 4.B. Numerical evaluations are

provided in Section 4.5. Finally, we summarize our contributions and conclude this

discussion in Section 4.6 with insights on future work.

4.3 Preliminaries

We start formalizing the problem set-up and introduce model parameters pertinent

to our analysis. We begin our discussion with our notion of optimality for the two

sparsity modalities; we also summarize the notation in Table 4.A.1 in the appendix.

4.3.1 Optimality of the Solution Pair

For the entry-wise case, we recover the low-rank component L, and the sparse coeffi-

cient matrix S, given the dictionary D, and data M generated according to the model

described in (4.1). Recall that se is the global sparsity, k denotes the number of non-

zero entries in a column of S when the dictionary is fat.

In the the column-wise sparsity setting, due to the inherent ambiguity in the model

(4.1), as discussed in Section 4.2.2, we can only hope to recover the column-space for

the low-rank matrix and the identities of the non-zero columns for the sparse matrix.

Therefore, in this case any solution in the Oracle Model (defined below) is deemed to

be optimal.

Definition 4.1 (Oracle Model for Column-wise Sparsity Case). Let the pair (L,S) be

the matrices forming the data M as per (4.1), define the oracle model {M,U ,ISc }. Then,

any pair (L0,S0) is in the Oracle Model {M,U ,ISc }, if PU (L0) = L, PSc(DS0) = DS and

L0 + DS0 = L + DS = M hold simultaneously, where PU and PSc are projections onto the

column space U of L and column support ISc of S, respectively.

4.3.2 Conditions on the Dictionary

We require that the dictionary D follows the generalized frame property (GFP) defined

as follows.

121

Definition 4.2. A matrix D satisfies the generalized frame property (GFP), on vectors

v ∈ R, if for any fixed vector v ∈ R where v , 0, we have

α`‖v‖22 ≤ ‖Dv‖22 ≤ αu‖v‖
2
2,

where α` and αu are the lower and upper generalized frame bounds with 0 < α` ≤ αu <∞.

The GFP shown above is met as long as the vectors v are not in the null-space of

the matrix D, and D has a finite ‖D‖. Therefore, for the thin dictionary setting d ≤ n for

both entry-wise and column-wise cases R can be the entire space, and GFP is satisfied

as long as D has full column rank. For example, D being a frame(Duffin and Schaeffer,

1952) suffices; see Heil (2013) for a brief overview of frames.

On the other hand, for the fat dictionary setting, we need the space R to be struc-

tured such that the GFP is met for both the entry-wise and column-wise sparsity cases.

Specifically, for the entry-wise sparsity case, we also require that the frame bounds

αu and α` be close to each other. To this end, we assume that D satisfies the restricted

isomtery property (RIP) of order k = O(d/ log(n)) with a restricted isometric constant (RIC)

of δ in this case, and that αu = (1 + δ) and α` = (1− δ).

4.3.3 Relevant Subspaces

We now define the subspaces relevant for our discussion. For the following discussion,

let the pair (L0,S0) denote the solution to D-RPCA(E) in the entry-wise sparse case.

Further, for the column-wise sparse setting, let (L0,S0) denote a solution pair in the

oracle model {M,U ,ISc } as defined in D.4.1, obtained by solving D-RPCA(C).

For the low-rank matrix L, let the compact singular value decomposition (SVD) be

defined as

L = UΣV>,

where U ∈ Rn×r and V ∈ Rm×r are the left and right singular vectors of L , respectively,

and Σ is the diagonal matrix with singular values on the diagonal. Here, matrices U

and V each have orthogonal columns, and the non-negative entries Σii = σi are ar-

ranged in descending order. We define L as the linear subspace consisting of matrices

122

spanning the same row or column space as L, i.e.,

L := {UW>1 + W2V>,W1 ∈Rm×r ,W2 ∈Rn×r}.

Next, let Se (Sc for the column-wise sparsity setting) be the space spanned by d ×m
matrices with the same non-zero support (column support, denoted as csupp(·)) as

S, and let the space D denote the space spanned by the dictionary sparse component

under our model be defined as

D := {DH},where

H ∈ Se for entry-wise case,

csupp(H) ⊆ ISc for column-wise case.

Here, ISc denotes the index set containing the non-zero column index set of S for the

column-wise case.

Also, we denote the corresponding complements of the spaces described above by

appending ‘⊥’. In addition, we use calligraphic ‘PG(·)’ to denote the projection oper-

ator onto a subspace G, and ‘PG’ to denote the corresponding projection matrix. For

instance, we define PU (·) and PV (·) as the projection operators corresponding to the

column space U and row space V of the low-rank component L. Therefore, for a given

matrix X ∈Rn×m,

PU (X) = PUX and PV (X) = XPV,

where PU = UU> and PV = VV>. With this, the projection operators onto, and orthog-

onal to the subspace L are respectively defined as

PL(X) = PUX + XPV −PUXPV, and

PL⊥(X) = (I−PU)X(I−PV).

4.3.4 Incoherence Measures and Other Parameters

We employ various notions of incoherence to identify the conditions under which our

procedures succeed. To this end, we first define the incoherence parameter µ, that

characterizes the relationship between the low-rank part, L, and the dictionary sparse

123

part DS as,

µ := max
Z∈D\{0}

‖PL(Z)‖F
‖Z‖F

. (4.2)

The parameter µ ∈ [0,1] is the measure of degree of similarity between the low-rank

part and the dictionary sparse component. Here, a larger µ implies that the dictionary

sparse component is close to the low-rank part, while a small µ indicates otherwise. In

addition, we also define the parameter βU as

βU := max
‖u‖=1

‖(I−PU)Du‖2
‖Du‖2 , (4.3)

which measures the similarity between the orthogonal complement of the column-

space U and the dictionary D.

The next two measures of incoherence can be interpreted as a way to identify the

cases where for L with SVD as L = UΣV>: (a) U resembles the dictionary D, and/or

(b) V resembles the sparse coefficient matrix S. In these cases, the low-rank part may

mimic the dictionary sparse component. To this end, similar to Mardani et al. (2013),

we define the following to measure these properties respectively as

(a) γU := max
i

‖PUDei‖2
‖Dei‖2

and (b) γV := max
i
‖PVei‖2. (4.4)

Here, γU ≤ 1, and achieves the upper bound when a dictionary element is exactly

aligned with the column space U of L. Moreover, γV∈ [r/nm,1] achieves the upper

bound when the row-space of L is “spiky”, i.e., a certain row of V is 1-sparse, meaning

that a column of L is supported by (can be expressed as a linear combination of) a

column of U. The lower bound here is attained when it is “spread-out”, i.e., each

column of L is a linear combination of all columns of U. In general, our recovery of

the two components is easier when the incoherence parameters γU and γV are closer

to their lower bounds. Further, for notational convenience, we define constants

ξe := ‖D>UV>‖∞ and ξc := ‖D>UV>‖∞,2. (4.5)

Here, ξe is the maximum absolute entry of D>UV>, which measures how close columns

of D are to the singular vectors of L. Similarly, for the column-wise case, ξc measures

the closeness of columns of D to the singular vectors of L under a different metric

124

(column-wise maximum `2-norm).

4.4 Main Results

We present the main results corresponding to each sparsity structure of S in this sec-

tion. We provide detailed proofs in Appendix 4.B.

4.4.1 Exact Recovery for Entry-wise Sparsity Case

Our main result establishes the existence of a regularization parameter λe, for which

solving the optimization problem D-RPCA(E) will recover the components L and S

exactly. To this end, we will show that such a λe belongs to a non-empty interval

[λmin
e ,λmax

e] with λmin
e and λmax

e defined as

λmin
e := 1+Ce

1−Ce ξe and λmax
e :=

√
α`(1−µ)−√rαuµ√

se
, (4.6)

where 0 ≤ Ce < 1 is a constant that captures the relationship between different model

parameters, and is defined as

Ce := c
α`(1−µ)2−c ,

and c is defined as

c :=

ct = αu ((1+2γU)(min(se ,d)+seγV)+2γV min(se ,m))
2 − α`(min(se ,d)+seγV)

2 , for d ≤ n,

cf = αu ((1+2γU)(k+seγV)+2γV min(se ,m))
2 − α`(k+seγV)

2 , for d > n.

Given these definitions, we formalize the theorem for the entry-wise case as follow-

ing, and its corresponding analysis is provided in Section 4.B.1.

Theorem 4.1. Suppose M = L + DS, where rank(L) = r and S has at most se non-zeros,

i.e., ‖S‖0 ≤ se ≤ smax
e := (1−µ)2

2
m
r . Given µ ∈ [0,1], γU, γV ∈ [r/m,1], ξe defined in (4.2),

(4.4), (4.5), and any λe ∈ [λmin
e ,λmax

e] with λmax
e > λmin

e ≥ 0 defined in (4.6), the dictio-

nary D ∈Rn×d obeys the generalized frame property D.4.2 with frame bounds [α`,αu],

solving D-RPCA(E) will recover matrices L and S if the following conditions hold:

125

• For d ≤ n, Rmay contain the entire space and γU follows

γU ≤


(1−µ)2−2seγV

2se(1+γV) , for se ≤min (d,smax
e)

(1−µ)2−2seγV
2(d+seγV) , for d < se ≤ smax

e

; (4.7)

• For d > n > C1 k log(n) for a constant C1, R consists of all k sparse vectors, and γU

follows

γU ≤
(1−µ)2−2seγV

2(k+seγV) . (4.8)

Theorem 4.1 establishes the sufficient conditions for the existence of λe to guar-

antee recovery of (L,S) for both the thin and the fat cases. The conditions on γU dic-

tated by (4.7) and (4.8), for the thin and fat case, respectively, arise from ensuring

that λmin
e ≥ 0. Further, the condition λmin

e < λmax
e , translates to the following sufficient

condition on rank r in terms of the sparsity se,

r <

(√
α`
αu

1−µ
µ −

ξe√
αuµ

1+Ce
1−Ce
√
se

)2

, (4.9)

for the recovery of (L,S). This relationship matches with our empirical evaluations and

will be revisited in Section 4.5.1.

We note that for both, thin and fat dictionary case, the conditions are closely re-

lated to the incoherence measures (µ, γV, and γU) between the low-rank part, L, the

dictionary, D, and the sparse component S. In general, smaller sparsity, rank, and in-

coherence parameters are sufficient for ensuring the recovery of the components for

a particular problem. This is in line with our intuition – the more distinct the two

components, the easier it should be to tease them apart. Moreover, we observe that the

theorem imposes an an upper-bound on the global sparsity, i.e., se ≤ smax
e = O(mr). This

bound is similar to the result in Xu et al. (2010), and is due to the deterministic nature

of our analysis w.r.t. the locations of the non-zero elements of coefficients S.

4.4.2 Exact Recovery for Column-wise Sparsity Case

Recall that we consider the oracle model in this case as described in D.4.1 owing to the

intrinsic ambiguity in recovery of (L,S); see our discussion in Section 4.2.2. To demon-

strate its recoverability, the following lemma establishes the sufficient conditions for

126

the existence of an optimal pair (L0,S0). The proof is provided in Appendix 4.C.2.

Lemma 4.1. Given M, D, and (L,Sc,D), any pair (L0,S0) ∈ {M,U ,ISc } satisfies span{col(L0)} =
U and csupp(S0) = ISc if µ < 1.

Analogous to the entry-wise case, we will show the existence of a non-empty in-

terval [λmin
c ,λmax

c] for the regularization parameter λc, for which solving D-RPCA(C)

recovers an optimal pair as per Lemma 4.1. Here, for a constant Cc := αu
α`

1
(1−µ)2γVβU,

λmin
c and λmax

c are defined as

λmin
c := ξc+

√
rscαuµCc

1−scCc and λmax
c :=

√
α`(1−µ)−√rαuµ√

sc
. (4.10)

Then, our main result for the column-wise case is as follows, and its analysis is

provided in Section 4.B.2.

Theorem 4.2. Suppose M = L + DS with (L,S) defining the oracle model {M,U ,ISc },
where rank(L) = r, |ISc | = sc for sc ≤ smax

c := α`
αuγV

· (1−µ)2

βU
. Given µ ∈ [0,1), βU, γV ∈

[r/m,1], ξc defined in (4.2), (4.3), (4.4), (4.5), and any λc ∈ [λmin
c ,λmax

c], for λmax
c >

λmin
c ≥ 0 defined in (4.10), solving D-RPCA(C) will recover a pair of components

(L0,S0) ∈ {M,U ,ISc }, if the space R is structured such that the dictionary D ∈ R
n×d

obeys the generalized frame property D.4.2 with frame bounds [α`,αu], for α` > 0.

Theorem 4.2 states the conditions under which the solution to the optimization

problem D-RPCA(C) will be in the oracle model defined in D.4.1. The condition on

the column sparisty sc ≤ smax
c is a result of the constraint that λmin

c ≥ 0. Similar to (4.9),

requiring λmax
c > λmin

c leads to the following sufficient condition on the rank r in terms

of the sparsity sc,

r <
(√

α`
αu

1−µ
µ −

ξc√
αuµ

√
sc

)2
. (4.11)

Moreover, suppose that 1 . αl ≤ αu . 1, which can be easily met by a tight frame when

d < n, or a RIP type condition when d > n. Further, if (1−µ)2

βU
is a constant, then since

γV = Θ(rm), we have that smax
c = O(mr). This is of the same order with the upper bound

of sc in the Outlier Pursuit (OP) (Xu et al., 2010).

Our numerical results in Section 4.5 further show that D-RPCA(C) can be much

more robust than OP, and may recover {U ,ISc } even when the rank of L is high and the

number of outliers sc is a constant proportion of m.

127

R
ec

ov
er

y
of

L

20 40 60 80 100
Sparsity, s

20

40

60

80

100

R
a
n
k
,
r

e

20 40 60 80 100
Sparsity, s

20

40

60

80

100

R
a
n
k
,
r

e

(a) d = 5 (b) d = 150

R
ec

ov
er

y
of

S

20 40 60 80 100
Sparsity, s

20

40

60

80

100

R
a
n
k
,
r

e

20 40 60 80 100
Sparsity, s

20

40

60

80

100

R
a
n
k
,
r

e

(c) d = 5 (d) d = 150

Figure 4.1: Recovery for varying rank of L, sparsity of S and number of dictionary elements in
D as per Theorem 4.1. Each plot shows average recovery across 10 trials for varying ranks and
sparsity up to smax

e = m, where n = m = 100 and the white region represents correct recovery.
We decide success if ‖L− L̂‖F/‖L‖F ≤ 0.02 and ‖S− Ŝ‖F/‖S‖F ≤ 0.02, where L̂ and Ŝ are the recovered
L and S, respectively. Panels (a)-(b) show the recovery of the low-rank part L and (c)-(d) show
the recovery of the sparse part with varying dictionary sizes d = 5 and 150, respectively. Also,
the predicted trend between rank r and sparsity se as per Theorem 4.1, eq.(4.9) is shown in red
in panels (a-b).

4.5 Numerical Simulations

In this section, we empirically evaluate the properties of D-RPCA(E) and D-RPCA(C)

via phase transition in rank and sparsity, and compare its performance to related tech-

niques, and to the behavior predicted by Theorem 4.1 and Theorem 4.2 in (4.9) and

(4.11), respectively 1.
1The code is made available at https://github.com/srambhatla/Dictionary-based-Robust-PCA;

see Chapter 7 for details.

https://github.com/srambhatla/Dictionary-based-Robust-PCA

128

R
ec

ov
er

y
of

L

100 200 300 400 500
Sparsity, se

10

20

30

40

50

60

R
a
n
k
,
r

500 1000 1500 2000
Sparsity, se

10

20

30

40

50

60

R
a
n
k
,
r

(a) d = 5 (b) d = 150

R
ec

ov
er

y
of

S

100 200 300 400 500
Sparsity, se

10

20

30

40

50

60

R
a
n
k
,
r

500 1000 1500 2000
Sparsity, se

10

20

30

40

50

60

R
a
n
k
,
r

(c) d = 5 (d) d = 150

Figure 4.2: Recovery for varying rank of L, sparsity of S and number of dictionary elements in
R. Panels (a)-(b) show the recovery of the low-rank part L and (c)-(d) show the recovery of the
sparse part with varying dictionary sizes d = 5 and 150, respectively. The experimental set-up
and the success metric remains the same as in Fig. 4.1.

4.5.1 Entry-Wise Sparsity Case

Experimental Set-up: We employ the accelerated proximal gradient (APG) algorithm

outlined in Algorithm 1 of Mardani et al. (2013) and Algorithm 1 of Rambhatla et al.

(2018b) to solve the optimization problem D-RPCA(E). For these evaluations, we fix

n = m = 100, and generate the low-rank part L by outer product of two column nor-

malized random matrices of sizes n×r andm×r, with entries drawn from the standard

normal distribution. In addition, we draw se non-zero entries of the sparse component

S from the Rademacher distribution, and the dictionary D from the standard normal

distribution with normalized columns. We then run 10 Monte-Carlo trials for each

pair of rank and sparsity, and for each of these, we scan across 100 values of λes in the

range of [λmin
e ,λmax

e] to find the best pair of (L0,S0) to compile the results. 2

2For ease of computation we run on modest values of n and m.

129

R
ec

ov
er

y
of

S

100 200 300 400 500
Sparsity, se

10

20

30

40

50

60

R
a
n
k
,
r

200 400 600 800 1000
Sparsity, se

10

20

30

40

50

60

R
a
n
k
,
r

(a) d = 5 (b) d = 50

Figure 4.3: Comparison of phase transitions in rank and sparsity between D-RPCA(E) and
RPCA† for recovery of S for different dictionary sizes. Panels (a) and (b) correspond to d = 5
and d = 50, respectively. Experimental set-up and the success metric remains same as Fig. 4.2.
The area in green corresponds to recovery by RPCA† where at least 1 out of the 10 Monte-Carlo
trials succeeds.

Discussion: Phase transition in rank and sparsity averaged over 10 trials for dictionar-

ies of sizes d = 5 (thin) and d = 150 (fat), are shown in Fig. 4.1 and Fig. 4.2, respectively.

We note from Fig. 4.1 that indeed the empirical relationship between rank and sparsity

for the recovery of (L0,S0) has the same trend as predicted by

r <

(√
α`
αu

1−µ
µ −

ξe√
αuµ

1+Ce
1−Ce
√
se

)2

,

as shown in (4.9) in Section 4.4 for se ≤ smax
e . Here, the parameters corresponding to

the predicted trend (shown in red) have been hand-tuned for best fit.

In fact, as shown in Fig. 4.2, this trend continues for sparsity levels much greater

than smax
e . This can be potentially attributed to the limitations of the deterministic

analysis (on the locations of the non-zero elements of S) presented here.

Further, Fig. 4.3 shows the results of RPCA† (in green, shows the area where at least

one of the 10 Monte-Carlo simulations succeeds) in comparision to the results obtained

by D-RPCA(E) for d = 5 and d = 50. We observe that D-RPCA(E) outperforms RPCA†

across the board. In fact, we notice that the RPCA† technique only succeeds when r < d.

We believe that this is because when d < r the component D†L is not low-rank (full-

rank in this case) w.r.t. the maximum potential rank of D†L. As a result, the model

assumptions of the robust PCA problem do not apply; see Section 4.2.2. In contrast,

the proposed framework of D-RPCA(E) can handle these cases effectively (see Fig. 4.3)

130

since L is low-rank irrespective of the dictionary size. This phenomenon highlights

the applicability of the proposed approach to cases where d < r, and simultaneous

recovery of the low-rank component in one-shot.

4.5.2 Column-wise Sparsity Case

We now present phase transition in rank r and number of outlierssc to evaluate the

performance of D-RPCA(C). In particular, we compare with Outlier Pursuit (OP) (Xu

et al., 2010) that solves D-RPCA(C) with D = I, and OP† to demonstrate that the a

priori knowledge of the dictionary provides superior recovery properties.

Experimental Set-up: Again, we employ a variant of the APG algorithm outlined in

Algorithm 1 of Mardani et al. (2013) specialized for the column-wise sparsity case

to solve the optimization problem D-RPCA(C); see Algorithm 1 of Rambhatla et al.

(2018b). We set n = 100,m = 1000, and for each pair of r and sc we run 10 Monte-Carlo

trials for r ∈ {5,10,15 . . . ,100} and sc ∈ {50,100,150, . . . ,900}. For our experiments, we

form L = [UV>0n×sc] ∈ R
n×m, where U ∈ Rn×r , V ∈ R(m−sc)×r have i.i.d. N (0,1) entries,

which are then column normalized. Next, we generate S = [0d×(m−sc)W] ∈ Rd×m where

each entry of W ∈Rd×sc is i.i.d. N (0,1). Also, the known dictionary D ∈Rn×d is formed

by normalizing the columns of a random matrix with i.i.d. N (0,1) entries. For each

method, we scan through 100 values of the regularization parameter λc ∈ [λmin
c ,λmax

c]

to find a solution pair (L0,S0) with the best precision, i.e., best detection of the outliers

and rejection of false positives. We declare an experiment successful if it acheives a

precision i.e. (True Positives/(True Positives + False Positives)) of 0.99 or higher. Here,

we threshold the column norms at 2× 10−3 before we evaluate the precision.

Discussion: Fig. 4.4 (a)-(c) shows the phase transition in rank r and column-sparsity

sc for the outlier identification performance (in terms of precison) of OP for d = 50, D-

RPCA(C) for d = 50 (and OP† in green, marking the region where precision is greater

than 0), and D-RPCA(C) for d = 150, respectively. We observe that the a priori knowl-

edge of the dictionary D significantly boosts the performance of D-RPCA(C) as com-

pared to OP. This showcases the superior outlier identification properties of the pro-

posed technique D-RPCA(C). Further, similar to the entry-wise case, we note that the

pseudo-inversed based technique OP† (in green) fails when r > d. For the d = 150

case the proposed technique D-RPCA(C) is able to identify the outlier columns with

high precision. This is interesting since our technique succeeds even when the outlier

131

d = 50 d = 50 d = 150

200 400 600 800

20

40

60

80

100

200 400 600 800

20

40

60

80

100

200 400 600 800

20

40

60

80

100

(a) OP (b) D-RPCA(C); (c) D-RPCA(C)
Green denotes OP†

Figure 4.4: Phase transitions in rank r and column sparsity sc across 10 Monte-Carlo simula-
tions. Panels (a), (b), (c) show the precision i.e., (True Positives /(True Positives+False Positives))
in identifying the outlier columns of S for d = 50 using (a) OP and (b) OP†, and D-RPCA(C) for
d = 150, respectively. In addition, panel (b) also shows the performance by OP† for d = 50 in
green, marking the region where precision is greater than 0, super imposed over D-RPCA(C).
Here, we threshold the column norms of the recovered matrix S at 2× 10−3 before computing
the precision, and a trial is declared successful if it achieves a precision of 0.99 or higher.

columns are not themselves sparse (we draw the entries of the outlier columns from

N (0,1)). This corroborates our theoretical assumption that R needs to be structured

such that GFP is met.

Our empirical evaluations paves way to potential improvements via a probabilistic

analysis of the model instead of the case considered here. Additionally, the recent

results on non-convex low-rank matrix estimation formulations (Tu et al., 2015; Chen

and Wainwright, 2015a) may potentially lead to computationally efficient algorithms

by replacing the expensive SVD step in every iteration. Exploration of these extensions

are left for future work.

4.6 Conclusions and Future Work

We analyze a dictionary based generalization of robust PCA. Here, we model the ac-

quired data as a superposition of a low-rank component and a dictionary sparse com-

ponent, considering two distinct sparsity patterns – entry-wise sparsity and column-

wise sparsity, respectively. Specifically, for the entry-wise sparsity case, we extend the

theoretical guarantees presented in Mardani et al. (2013) to a setting wherein the dic-

tionary D may have arbitrary number of columns, and the coefficient matrix S has

global sparsity of se, i.e. ‖S‖0 = se ≤ smax
e , rendering the results useful for a potentially

132

wide range of applications. Further, we propose a column-wise sparsity model, which

can be viewed as a dictionary based generalization of Outlier Pursuit (Xu et al., 2010).

For this case, we analyze and develop the conditions under which solving a convex pro-

gram will recover the correct column-space of the low-rank part while identifying the

outlier columns in the dictionary sparse part. To corroborate our theoretical results,

we provide empirical evaluations via phase transition plots in rank and sparsity.

Appendices: Dictionary-based

Generalization of Robust PCA

4.A Summary of Notation

In the following appendices, we provide the proofs of the lemmata employed to estab-

lish our main results. We also summarize the notation in Table 4.A.1.

4.B Proof of Main Results

4.B.1 Proofs for Entry-wise Case: Proof of Theorem 4.1

We use dual certificate construction procedure to prove the main result in Theorem. 4.1;

the proofs of all lemmata used here are listed in Appendix 4.C.1. To this end, we

start by constructing a dual certificate for the convex problem shown in D-RPCA(E).

Here, we first show the conditions the dual certificate needs to satisfy via the following

lemma.

Lemma 4.2. If there exists a dual certificate Γ ∈Rn×m satisfying

(C1) PL(Γ) = UV>, (C2) PSe (D
>Γ) = λe sign(S0),

(C3) ‖PL⊥(Γ)‖ < 1, and (C4) ‖PS⊥e (D>Γ)‖∞ < λe.

then the pair (L0, S0) is the unique solution of D-RPCA(E).

We will now proceed with the construction of the dual certificate which satisfies

the conditions outlined by (C1)-(C4) by Lemma 4.2. Using the analysis similar to

133

134
Table 4.A.1: Summary of important notation and parameters

Matrices
M ∈Rn×m The data matrix
L ∈Rn×m The low-rank matrix with rank-r and sin-

gular value decomposition L = UΣV>

D ∈Rn×d The known dictionary either thin (d ≤ n)
or fat (d > n)

S ∈Rd×m The sparse component with the following
properties –(1) in case of entry-wise spar-
sity: se non-zero entries and when d > n
has at most k non-zeros per column, and
(2) in case of column-wise sparsity: sc
non-zero columns

Regularization Parameters
λe ∈R The regularization parameter for the

entry-wise sparsity case
λc ∈R The regularization parameter for the col-

umn sparsity case
Subspaces
L The set of matrices which span the same

column or row space as L, i.e., L :=
{UW>1 + W2V>,W1 ∈Rm×r ,W2 ∈Rn×r}.

Se The set of matrices with the same support
as S (for the entry-wise sparse case).

Sc The set of matrices with the same column
support as S (for the column-wise sparse
case).

D The set of matrices whose columns span
the subspace spanned by columns of D,
i.e. D := {Z = RH,H ∈ Se or H ∈ Sc}

U The column space of L
V The row space of L

Index Sets
ISe Support of matrix S (entry-wise case)
ISc Column support of matrix S (the outliers)
IL Index set of the inliers (column-wise

case)
Projection
PG(·) Projection operator corresponding to any

subspace G
PG Projection matrix corresponding to the

operator PG(·)
Parameters for analysis

µ The incoherence parameter between the
low-rank component and the dictionary,
defined as µ := max

Z∈D\{0d×m}
‖PL(Z)‖F
‖Z‖F

γV Defined as γV := max
i
‖PVei‖2

γU Defined as γU := max
i

‖PUDei‖2
‖Dei‖2

βU Defined as βU := max
‖u‖=1

‖(I−PU)Du‖2
‖Du‖2

ξe Defined as ξe := ‖D>UV>‖∞
ξc Defined as ξc := ‖D>UV>‖∞,2
α` Lower generalized frame bound
αu Upper generalized frame bound

135

Mardani et al. (2013) (Section V. B.), we construct the dual certificate as

Γ = UV> + (I−PU)X(I−PV),

for arbitrary X ∈ Rn×m. The condition (C1) is readily satisfied by our choice of Γ. For

(C2), we substitute the expression for Γ to arrive at

PSe (D
>UV>) +PSe (D

>(I−PU)X(I−PV))

= λe sign(S0). (4.12)

Letting Z := D>(I−PU)X(I−PV) and

BSe
:= λe sign(S0)−PSe(D

>UV>),

we can write (4.12) as PSe(Z) = BSe
. Further, we can vectorize the equation above

as PSe(vec(Z)) = vec(BSe
). Let bSe be a length se vector containing elements of BSe

corresponding to the support of S0. Now, note that vec(Z) can be represented in terms

of a Kronecker product as follows,

vec(Z) = [(I−PV)⊗D>(I−PU)]vec(X).

On defining A := (I−PV) ⊗D>(I−PU) ∈ Rmd×mn, we have vec(Z) = Avec(X). Further,

let ASe
∈ R

s×nm denote the rows of A that correspond to support of S0, and let AS⊥e
correspond to the remaining rows of A. Using these definitions and results, we have

ASevec(X) = bSe . Thus, for conditions (C1) and (C2) to be satisfied, we need

vec(X) = A>Se(ASeA
>
Se)
−1bSe . (4.13)

Here, the following result ensures the existence of the inverse.

Lemma 4.3. If µ < 1 and α` > 0, σmin(ASe) satisfies the bound σmin(ASe) ≥
√
α`(1−µ).

Now, we look at the condition (C3) ‖PL⊥(Γ)‖ < 1. This is where our analysis departs

from Mardani et al. (2013); we write

‖PL⊥(Γ)‖ = ‖(I−PU)X(I−PV)‖

≤ ‖X‖ ≤ ‖X‖F ≤ ‖A>Se (ASeA
>
Se)
−1‖‖bSe‖2,

136

where we have used the fact that ‖(I−PU)‖ ≤ 1 and ‖(I−PV)‖ ≤ 1. Now, as A>Se (ASeA
>
Se)
−1

is the pseudo-inverse of ASe , i.e., ASeA
>
Se(ASeA

>
Se)
−1 = I, we have that ‖A>Se(ASeA

>
Se)
−1‖ =

1/σmin(ASe), where σmin(ASe) is the smallest singular value of ASe . Therefore, we have

‖PL⊥(Γ)‖ ≤ ‖bSe ‖2
σmin(ASe)

. (4.14)

The following lemma establishes an upper bound on ‖bSe‖2.

Lemma 4.4. ‖bSe‖2 satisfies the bound ‖bSe‖2 ≤ λe
√
se +
√
rαuµ.

Combining (4.14), Lemma 4.3, and Lemma 4.4, we have

‖PL⊥(Γ)‖ ≤ λe
√
se+
√
rαuµ.√

α`(1−µ) . (4.15)

Now, combining (4.15) and the upper bound on λe defined in (4.6), we have that (C3)

holds.

Now, we move onto finding conditions under which (C4) is satisfied by our dual

certificate. For this we will bound ‖PSe⊥(D>Γ)‖∞. Our analysis follows the similar

procedure as employed in deriving (16) in Mardani et al. (2013), reproduced here for

completeness. First, by the definition of Γ and properties of the ‖.‖∞ norm, we have

‖PSe⊥(D>Γ)‖∞≤‖PSe⊥(Z)‖∞+‖PSe⊥(D>UV)‖∞. (4.16)

We now focus on simplifying the term ‖PSe⊥(Z)‖∞. By definition of A, and using the

fact that vec(Z) = Avec(X), we have PSe⊥(Z) = ASe⊥vec(X), which implies

‖PSe⊥(Z)‖∞ = ‖ASe⊥vec(X)‖∞
= ‖ASe⊥A>Se(ASeA

>
Se)
−1bSe‖∞,

where we have used the result on vec(X) shown in (4.13).

Now, since ‖bSe‖∞ can be written as

‖bSe‖∞ = ‖BSe‖∞ = ‖λesign(A0)−PSe (D
>UV>)‖∞.

Now, using the following upper bound on ‖bSe‖∞,

Lemma 4.5. ‖bSe‖∞ satisfies the bound ‖bSe‖∞ ≤ λe + ‖PSe(D
>UV>)‖∞.

137

and on defining

Q := ASe⊥A>Se (ASeA
>
Se)
−1,

we have

‖PSe⊥(Z)‖∞ = ‖QbSe‖∞ ≤ ‖Q‖∞,∞‖bSe‖∞
= ‖Q‖∞,∞‖λesign(A0)−PSe (D

>UV>)‖∞,

≤ ‖Q‖∞,∞(λe + ‖PSe (D
>UV>)‖∞),

where we have the following bound for ‖Q‖∞,∞.

Lemma 4.6. ‖Q‖∞,∞ satisfies the bound ‖Q‖∞,∞ ≤ Ce(αu ,α`,γU,γV, se,d,k,µ), where

Ce := c
α`(1−µ)2−c

where 0 ≤ Ce < 1 and c is defined as

c :=



ct = αu ((1+2γU)(min(se ,d)+seγV)+2γV min(se ,m))
2

−α`(min(se ,d)+seγV)
2 , for d ≤ n,

cf = αu ((1+2γU)(k+seγV)+2γV min(se ,m))
2

−α`(k+seγV)
2 , for d > n.

(4.17)

Combining this with (4.16) and Lemma 4.6, we have

‖PSe⊥(D>Γ)‖∞ ≤ Ce
(
λe + ‖PSe(D

>UV>)‖∞
)

+ ‖PSe⊥(D>UV>)‖∞. (4.18)

By simplifying (4.18), we arrive at the lower bound λmin
e for λe as in (4.6), from which

(C4) holds. Gleaning from the expressions for λmax
e and λmin

e , we observe that λmax
e >

λmin
e ≥ 0 for the existence of λe that can recover the desired matrices. This completes

the proof.

Characterizing λmin
e : In the previous section, we characterized the λmin

e and λmax
e

based on the dual certificate construction procedure. For the recovery of the true pair

(L,S), we require λmax
e > λmin

e ≥ 0. Since ξe ≥ 0 and c ≥ 0 by definition, we need

138

0 ≤ Ce < 1 for λmin
e > 0, i.e.,

c < 1
2α`(1−µ)2 ≥ α`

2 . (4.19)

Conditions for thin D: To simplify the analysis we assume, without loss of generality,

that d < m. Specifically, we will assume that d ≤ m
αr , where α > 1 is a constant. With

this assumption in mind, we will analyze the following cases for the global sparsity,

when se ≤ d and d < se ≤m.

Case 1: se ≤ d. For this case ct is given by

ct = seαu
2 [(1 + 2γU)(1 +γV) + 2γV]− seα`2 (1 +γV)

From (4.19), we have α`(1−µ)2 − 2ct > 0, which leads to

αu
α`
< (1−µ)2+se(1+γV)
se(1+2γU)(1+γV)+2seγV

.

As per the GFP of D.4.2, we also require that αu/α` ≥ 1. Therefore we arrive at

γU <
(1−µ)2−2seγV

2se(1+γV) .

Further, since γU ≥ 0, we require the numerator to be positive, and since the lower

bound on γV ≥ r
m , we have

se ≤
(1−µ)2

2
m
r := smax

e ,

which also implies se ≤m. Now, the condition ct ≥ 0 implies

αu
α`
≥ 1+γV

(1+2γU)(1+γV)+2γV
.

Since, the R.H.S. of this inequality is upper bounded by 1 (achieved when γU and γV

are zero). This condition on ct is satisfied by our assumption that αu/α` ≥ 1.

Case 2: d < se ≤m. For this case, we have

ct = αu
2 ((1 + 2γU)(d + seγV) + 2seγV)− α`2 (d + seγV).

139

From (4.19), we have

αu
α`
< (1−µ)2+(d+seγV)

(1+2γU)(d+seγV)+2seγV
.

Again, due to the requirement that αu/α` ≥ 1, following a similar argument as in the

previous case we conclude that

γU ≤
(1−µ)2−2seγV

2(d+seγV) and se ≤
(1−µ)2

2
m
r .

As in the previous case the ct ≥ 0 is met by our due to our assumption on the frame

bounds.

Conditions for fat D: To simplify the analysis, we suppose that k < m. Note that in

this case, we require that the coefficient matrix S has k-sparse columns. Now, c = cf is

given by

cf := αu
2 ((1 + 2γU)(k + seγV) + 2γVse)−

αl
2 (k + seγV)

As for the thin case, we substitute the expression for cf in (4.19) as follows

αu
α`
< (1−µ)2+(k+seγV)

(1+2γU)(k+seγV)+2seγV

Again, by GFP we require that αu/α` ≥ 1, therefore we have

γU <
(1−µ)2−2seγV

2(k+seγV) and se ≤
(1−µ)2

2
m
r ,

Also, the condition that cf ≥ 0 is met by the assumption that D obeys GFP.

Characterizing λmax
e : Further, the condition λmin

e < λmax
e , translates to a relationship

between rank r, and the sparsity se, as shown in (4.9) for se ≤ smax
e .

4.B.2 Proofs for Column-wise Case: Proof of Theorem 4.2

In this section we prove Theorem 4.2; the proofs of all lemmata are listed in Ap-

pendix 4.C.2. The Lagrangian of the nonsmooth optimization problem D-RPCA(C)

is

F (L,S,Λ) = ‖L‖∗ +λc‖S‖1,2 + 〈Λ,M−L−DS〉, (4.20)

140

where Λ ∈ Rn×m is a dual variable. The subdifferentials of (4.20) with respect to (L,S)

are

∂LF (L,S,Λ) = {UV> + W−Λ,‖W‖2 ≤ 1,PL(W) = 0},

∂SF (L,S,Λ) =
{
λcH +λcF−D>Λ,PSc(H) = H,

H:,j =
S:,j

‖S:,j‖2
,PSc(F) = 0,‖F‖∞,2 ≤ 1

}
. (4.21)

Then we claim that a pair (L,S) is an optimal point of D-RPCA(C) if and only if the

following hold by the optimality conditions:

0n×m ∈ ∂LF (L,S,Λ) and (4.22)

0d×m ∈ ∂SF (L,S,Λ). (4.23)

The following lemma states the optimality conditions for the optimal solution pair

(L,S).

Lemma 4.7. Given M and D, let (L,S) define the oracle model {M,U ,ISc }. Then any

solution (L0,S0) ∈ {M,U ,ISc } is the an optimal solution pair of D-RPCA(C), if there

exists a dual certificate Γ ∈Rn×m that satisfies

(C1) PL(Γ) = UV>, (C2) PSc (D
>Γ) = λcH, where H:,j = S:,j /‖S:,j‖2 for all j ∈ ISc ; 0,

otherwise,

(C3) ‖PL⊥(Γ)‖2 < 1, and (C4) ‖PSc⊥(D>Γ)‖∞,2 < λc.

We first propose Γ as the dual certificate, where

Γ = UV> + (I−PU)X (I−PV) , for any X ∈Rn×m.

Hence, the condition (C1) is readily satisfied by our choice of Γ. Now, the condition

(C2), defined as PSc (D
>Γ) = λcS̃, where S̃:,j =

S:,j

‖S:,j‖2
for all j ∈ ISc ; 0, otherwise. Sub-

strituting the expression for Γ, we need the following condition to hold

PSc(D
>UV>)+PSc (D

>(I−PU)X (I−PV))=λcS̃. (4.24)

Letting Z := D> (I−PU)X (I−PV) and BSc := λcS̃−PSc (D
>UV>), we have PSc (Z) = BSc .

141

Further, vectorizing the equation above, we have

PSc (vec(Z)) = bSc , (4.25)

where bSc := vec(BSc). Next, by letting A := (I−PV)⊗D>(I−PU), using the definition

of Z and the properties of the Kronecker product we have vec(Z) = Avec(X). Now, let

ASc denote the rows of A corresponding to the non-zero rows of vec(S) and AS⊥c denote

the remaining rows, then

PSc (vec(Z)) = AScvec(X). (4.26)

From (4.25) and (4.26), we have AScvec(X) = bSc . Therefore, we need the following

vec(X) = A>Sc(AScA
>
Sc)
−1bSc , (4.27)

which corresponds to the least norm solution i.e., X = argminX ‖X‖F, s.t. AScvec(X) =

bSc). For this choice of X (4.24) is satisfied and consequently the condition (C2). Here,

the existence of the inverse is ensured by the following lemma.

Lemma 4.8. If µ < 1 and α` > 0, the minimum singular values of ASc is bounded away

from 0 and is given by
√
α`(1−µ)

Upon the existence of such X as defined in (4.27), (C3) is satisfied if the following

condition holds

‖PL⊥(Γ)‖2 = ‖ (I−PV)X (I−PU)‖2
≤ ‖I−PV‖2‖X‖2‖I−PU‖2 = ‖X‖2 ≤ ‖X‖F < 1.

From (4.27), this condition translates to

‖A>Sc(AScA
>
Sc)
−1‖‖bSc‖2 < 1.

Now, since ‖A>Sc (AScA
>
Sc)
−1‖‖ = 1/σmin(ASc) (see the analogous analysis for the entry-

wise case), we need

‖PL⊥(Γ)‖2 ≤
‖bSc ‖2

σmin(ASc)
< 1.

142

Now, using Lemma 4.8 and the following bound on ‖bSc‖2,

Lemma 4.9. ‖bSc‖2 is upper bounded by λc
√
sc +
√
rαuµ.

we have that the condition (C3) holds if

‖PL⊥(Γ)‖2 ≤
λc
√
sc+
√
rαuµ√

α`(1−µ) < 1,

which is satisfied by our choice of λmax
c (4.10). Now, for the condition (C4) we need

the following condition to hold true:

‖PS⊥c (D>Γ)‖∞,2
≤ ‖PS⊥c (D>UV>)‖∞,2+‖PS⊥c (D>(I−PU)X(I−PV))‖∞,2
= ‖PS⊥c (D>UV>)‖∞,2 + ‖PS⊥c (Z)‖∞,2 < λc.

Note that, here ‖PSc(D
TUVT)‖∞,2 ≤ ξc. Therefore, using the following result,

Lemma 4.10. An upper bound on ‖PS⊥c (Z)‖∞,2 is given by (λcsc +
√
rαuscµ)Cc.

the condition (C4) implies that,

ξc + αu
α`(1−µ)2

√
scγVβU(λc

√
sc +
√
rαuµ) < λc.

To this end, if we let Cc := αu
α`(1−µ)2γVβU, (C4) is satisfied by λmin

c defined in (4.10). This

completes the proof.

Characterizing λmin
c : From (4.10), we need λmin

c := ξc+
√
rscαuµCc

1−scCc ≥ 0, where

Cc := αu
α`(1−µ)2γVβU ≥ 0. Then from scCc < 1, we require sc < smax

c := α`(1−µ)2

αuγVβU
.

Characterizing λmax
c : Since we need λmin

c < λmax
c , substituting the expressions for λmin

c

and λmax
c , and using the fact that scCc < 1, we arrive at (4.11).

4.C Proofs of Intermediate Results
4.C.1 Proofs for Entry-wise Case

We present the details of the proofs in this section for the entry-wise case. We first

start by deriving the optimality conditions.

Proof of Lemma 4.2. Let {L0,S0} be a solution of the problem posed above. Notice that

this pair is not necessarily unique. For example, as shown in proof of Lemma 2 in

143

Mardani et al. (2013), {L0 + DH,S0 −H}, with arbitrary H, is another feasible solution

of the problem satisfying the optimality conditions (derived in this section).

We begin by writing the Lagrangian, F (L,S,Λ), for the given problem as follows.

F (L,S,Λ) = ‖L‖∗ +λe‖S‖1 + 〈Λ, M−L−DS〉,

where Λ ∈Rn×m are the Lagrange multipliers.

Let the singular value decomposition (SVD) of L0 be represented as UΣV>. Then

the sub-differential set of ‖L‖∗ can be represented as

∂L‖L‖∗
∣∣∣∣
L=L0

= {UV> + W : ‖W‖ ≤ 1,PL(W) = 0},

as shown in Watson (1992). Also, the subdifferential set corresponding to ‖S‖1 is given

by

∂S‖S‖1
∣∣∣∣
S=S0

= {sign(S0) + F : ‖F‖∞ ≤ 1,PSe (F) = 0},

Using these results, we write the sub-differential of the Lagrangian with respect to L

and S at {L0,S0} as

∂LF (L0,S0,Λ) = {UV> + W−Λ : ‖W‖ ≤ 1,PL(W) = 0},

∂SF (L0,S0,Λ) = {λesign(S0) +λeF−D>Λ,‖F‖∞ ≤ 1,

PSe (F) = 0}.

Then optimality conditions are

0n×m ∈ ∂LF (L0,S0,Λ) and 0d×m ∈ ∂SF (L0,S0,Λ),

which implies that the dual solution Λ must obey the following,

Λ ∈UV> + W, ‖W‖ ≤ 1, PL(W) = 0n×m and

D>Λ ∈ λesign(S0) +λeF, ‖F‖∞ ≤ 1, PSe (F) = 0d×m.

Our aim here is to find the conditions on W and F such that the pair {L0, S0} is a unique

solution to the problem at hand.

144

Using these conditions, we see that PL(Λ) = UV> and PSe(D
>Λ) = λesign(S0); these

correspond to conditions (C1) and (C2), respectively. Now consider a feasible solution

{L0 + DH,S0 −H} for a non-zero H ∈ Rd×m. Let W, with ‖W‖ = 1 and PL(W) = 0, then

by duality of norms,

〈W, DH〉 = 〈W, PL⊥(DH)〉 = ‖PL⊥(DH)‖∗.

Further, let F, with ‖F‖∞ = 1 and PSe(F) = 0, be such that

Fij =

−sign(Hij) , if {i, j} < Se and Hij , 0

0 , otherwise
,

where Fij denotes the (i, j)th element of F. Then, we arrive at the following simplifica-

tion for 〈F, H〉 by duality of norms,

〈F, H〉 = 〈F, PS⊥e (H)〉 = − ‖PS⊥e (H)‖1.

We first write the sub-gradient optimality condition,

‖L0 + DH‖∗ +λe ‖S0 −H‖1 ≥ ‖L0‖∗ +λe ‖S0‖1
+ 〈UV> + W, DH〉 − 〈λesign(S0) +λeF, H〉. (4.28)

Next, we use the relationships derived above to simplify the following term:

〈UV> + W, DH〉 − 〈λesign(S0) +λeF, H〉,

= 〈W,DH〉 −λe〈F,H〉+ 〈PL(Λ),DH〉 − 〈PSe(D
>Λ),H〉

= ‖PL⊥(DH)‖∗+λe‖PS⊥e (H)‖1+〈PL(Λ),DH〉−〈PSe(D
>Λ),H〉

We now simplify 〈PL(Λ), DH〉 − 〈PSe(D
>Λ), H〉 using Holder’s inequality.

〈PL(Λ),DH〉 − 〈PSe (D
>Λ),H〉

= 〈Λ−PL⊥(Λ), DH〉 − 〈D>Λ−PS⊥e (D>Λ),H〉

≥ −‖PL⊥(DH)‖∗‖PL⊥(Λ)‖ − ‖PS⊥e (D>Λ)‖∞‖PS⊥e (H)‖1

145

Finally, we simplify the optimality condition in shown in (4.28),

‖L0 + DH‖∗ + λe ‖S0 −H‖1
≥ ‖L0‖∗ +λe ‖S0‖1 + (1− ‖PL⊥(Λ)‖)‖PL⊥(DH)‖∗

+ (λe − ‖PS⊥e (D>Λ)‖∞)‖PS⊥e (H)‖1.

Here, we note that if ‖PL⊥(Λ)‖ < 1 and ‖PS⊥e (D>Λ)‖∞ < λe, then the pair {L0,S0} is

the unique solution of the problem. Consequently, these are the required necessary

conditions (C3) and (C4), respectively.

Proof of Lemma 4.3. First, note that we need ASe to have full row rank, i.e, its smallest

singular value should be greater than zero. To this end, we first derive a lower bound

on the smallest singular value, σmin(ASe) of ASe as follows:

σmin(ASe) = min
H∈Se\{0}

‖A>vec(H)‖
‖vec(H)‖ .

Now, using the definition of A> and properties of Kronecker products namely, trans-

pose and vectorization of product of three matrices, we have

σmin(ASe) = min
H∈Se\{0}

‖(I−PU)DH(I−PV)‖F
‖H‖F

.

Now, since (I−PU)DH(I−PV) = PL⊥(DH),

σmin(ASe) = min
H∈Se\{0}

‖PL⊥ (DH)‖F
‖DH‖F

‖DH‖F
‖H‖F

.

Using the GFP, we have the following lower bound:

σmin(ASe) ≥
√
α` min

Z∈D\{0}
‖PL⊥ (Z)‖F
‖Z‖F

.

Further, simplifying using properties of the projection operator, the reverse triangle

inequality and the definition of µ,

σmin(ASe) =
√
α` min

Z∈D\{0}
‖Z−PL(Z)‖F
‖Z‖F

≥
√
α`

(
1− max

Z∈D\{0}
‖PL(Z)‖F
‖Z‖F

)
=
√
α`(1−µ).

146

Therefore, we note that if µ < 1 and α` > 0, ASe has full row rank, and the lower bound

on the smallest singular value is given by
√
α`(1−µ).

Proof of Lemma 4.4. We begin with the definition of bSe . Since ‖bSe‖2 = ‖BSe‖F and

BSe
:= λesign(S0)−PSe(D

>UV>),

‖bSe‖2 = ‖λesign(S0)−PSe (D
>UV>)‖F,

≤ λe
√
se + ‖PSe(D

>UV>)‖F.

Now for an upper bound on ‖PSe (D
>UV>)‖F we start by analyzing ‖PSe (D

>UV>)‖2F,

‖PSe (D
>UV>)‖2F = |〈D>UV>, PSe (D

>UV>)〉|.

Using properties of the inner products and using the fact that PL(UV>) = UV>,

‖PSe (D
>UV>)‖2F = |〈PL(UV>), DPSe(D

>UV>)〉|.

Further simplifying using Cauchy Schwarz inequality and the definition of µ we have

‖PSe (D
>UV>)‖2F ≤ ‖PL(UV>)‖F‖PL(DPSe (D

>UV>))‖F
≤ µ‖UV>‖F‖DPSe (D

>UV>)‖F

Now, since ‖UV>‖F =
√
r and using the GFP we have ‖PSe(D

>UV>)‖F ≤ µ
√
rαu . There-

fore, an upper bound for ‖bSe‖2 is given by ‖bSe‖2 ≤ λe
√
se +
√
rαuµ.

Proof of Lemma 4.5. Since ‖bSe‖∞ = ‖BSe‖∞ and BSe
:= λesign(S0) − PSe(D

>UV>), we

have the upper bound ‖bSe‖∞ ≤ λe + ‖PSe(D
>UV>)‖∞.

Proof of Lemma 4.6. We begin by simplifying the quantity of interest as follows:

‖Q‖∞,∞ = ‖ASe⊥A>Se (ASeA
>
Se)
−1‖∞,∞

≤ ‖ASe⊥A>Se‖∞,∞‖(I− (I−ASeA
>
Se))
−1‖∞,∞

≤
‖ASe⊥A>Se ‖∞,∞

1−‖I−ASeA>Se ‖∞,∞
. (4.29)

Now, we derive appropriate bounds on the numerator and the denominator of

(4.29) separately. Consider the numerator ‖ASe⊥A>Se‖∞,∞. Here, we are interested in

147

the maximum `1-norm of the rows of ASe⊥A>Se , i.e.,

‖ASe⊥A>Se‖∞,∞ = max
i
‖e>i ASe⊥A>Se‖1.

Let ISe refer to the support of S0, and ĪSe to its complement. Then, the expression can

be written in terms of ISe and ĪSe :

‖ASe⊥A>Se‖∞,∞ = max
j∈ĪSe

∑
`∈ISe
|e>l AA>ej |.

Now, A is defined as (I−PV)⊗D>(I−PU), therefore using the property of the product

of two Kronecker products and product of projection matrices, AA> can be written as

AA> = (I−PV)⊗D>(I−PU)D.

We are interested in the {`, j} entry of AA>. Since, AA> has a Kronecker product struc-

ture, an entry of AA> is given by the product of elements of the matrices in the Kro-

necker product, therefore

max
j∈ĪSe

∑
`∈ISe
|e>l AA>ej |=max

j1,j2∈ĪSe

∑
`1,`2∈ISe

g(j1, j2, `1, `2), (4.30)

where g(j1, j2, `1, `2) is given by

g(j1, j2, `1, `2) = |Tr(e`2
e>`1

D>(I−PU)Dej1e>j2(I−PV))|.

Now, consider g(j1, j2, `1, `2), which can be simplified as

g(j1, j2, `1, `2) = |Tr(e`2
e>`1

D>(I−PU)Dej1e>j2)

−Tr(e`2
e>`1

D>(I−PU)Dej1e>j2PV)|.

Since trace is invariant under cyclic permutations, we have

g(j1, j2, `1, `2) = |e>`1
D>(I−PU)Dej11{j2=`2}

− e>`1
D>(I−PU)Dej1e>j2PVe`2

|.

Denote x := e>`1
D>(I−PU)Dej1 and y := e>j2PVe`2

, then we have

148

g(j1, j2, `1, `2) = |x1{j2=`2} − xy|.

Now, the following upper bound on g(j1, j2, `1, `2) can be evaluated by squaring both

sides and simplifying

g(j1, j2, `1, `2) ≤ x
√
1{j2=`2} + y

2. (4.31)

First consider x, which can be written as x = x1{j1=`1} + x1{j1,`1}. Here, x1{j1=`1} can be

upper bounded as shown below using the GFP

x = (e>`1
D>(I−PU)De`1

) ≤ e>`1
D>De`1

≤ αu .

Further, we can derive an upper bound on x1{j1,`1} using the paraflelogram law for

inner-products as follows.

x ≤ |e>j1D>De`1
|+ |e>j1D>PUDe`1

|

≤ αu−α`
2 +αuγU = αu(1+2γU)

2 − α`2 .

Therefore, we have

x ≤ αu1{j1=`1} + (αu(1+2γU)
2 − α`2)1{j1,`1}.

Now, consider
√
1{j2=`2} + y

2, since y = e>j2PVPVe`2
, and further, since

√
a2 + b2 < (a +

b) for a > 0 and b > 0, we have
√
1{j2=`2} + y

2 ≤ 1{j2=`2} +γV. Now, substituting in (4.31),

i.e., the expression for g(j1, j2, `1, `2), we have,

g(j1, j2, `1, `2) ≤

(αu1{j1=`1} + (αu(1+2γU)
2 − α`2)1{j1,`1})(1{j2=`2} +γV),

and finally substituting in (4.30) and noting that since j1, j2 ∈ ĪSe and `1, `2 ∈ ĪSe ,
1{j1=`1}1{j2=`2} = 0,

‖ASe⊥A>Se‖∞,∞ ≤ max
j1,j2∈ĪSe

∑
`1,`2∈ISe

(αu (1+2γU)
2 − α`2)1{j1,`1},

{j2=`2}

+αuγV1{j1=`1} + (αu (1+2γU)γV
2 − α`γV

2)1{j1,`1}. (4.32)

149

Now, for A0 ∈ Rd×m, the maximum number of non-zeros per row is min(se,m), while

those in a column are min(se,d) for the thin case and min(se, k) for the fat case. Then

we have

‖ASe⊥A>Se‖∞,∞ ≤ c. (4.33)

Here, the constant c is as defined in (4.17). Now, to bound the denominator of (4.29),

we have

‖I−ASeA
>
Se‖∞,∞ = max

i
‖e>i (I−ASeA

>
Se)‖1

= max
j,`∈S
|1− ‖e>j A‖2|+

∑
j,`
|〈e>j A,e>l A〉| (4.34)

We proceed to bound |1− ‖e>j A‖2|. For this, we derive a lower bound on ‖e>j A‖2. Note

that e>j A selects the j-th row of A, which has a Kronecker product structure. Therefore,

‖e>j A‖ = ‖(I−PU)Dej1e>j2(I−PV)‖F = ‖PL⊥(Dej1e>j2)‖F

≥ ‖Dej1e>j2‖ − ‖PL(Dej1e>j2)‖F ≥
√
α`(1−µ).

Therefore, since µ < 1 and α` > 0, then if α` ≤ 1
(1−µ)2 , we have |1−‖e>j A‖2| ≤ 1−α`(1−µ)2.

The analysis for deriving an upper bound for the second term in (4.34) closesly follows

that used in (4.33), as shown below.

∑
j,`
|〈e>j ASe ,e

>
l ASe〉| =

∑
(`1,`2)∈S\{(j1,j2)}

g(j1, j2, `1, `2) ≤ c.

Combining these results, we have the following bound for

‖I−ASeA
>
Se‖∞,∞ ≤ 1−α`(1−µ)2 + c.

Finally, substituting these results in (4.29) we have ‖Q‖∞,∞ ≤ Ce := c
α`(1−µ)2−c , where c

is given by (4.17).

4.C.2 Proofs for Column-wise Case

Proof of Lemma 4.1. We show that for any (L0,S0) ∈ {M,U ,ISc }, if span{col(L0)} = U and

csupp(DS0) = ISc do not hold simultaneously, then µ = 1.

150

Let L + DS = M, as per our model shown in (4.1). Now, let (L0,S0) be any other pair in

our Oracle Model {M,U ,ISc },

L0 = L +∆1 ∈ U and DS0 = DS +∆2 ∈ Sc,

for some ∆1 and ∆2, then we have that ∆1 +∆2 = 0. This implies that csupp(∆1) ∈ Sc.
Further, this implies that L and L0 at least match in the columns indexed by the inliers,
i.e., PIL

(L) = PIL
(L0), and we have

U = span{col(L0)} = span{col(PIL (L0))} = span{col(PIL (L))}.

Therefore, csupp(DS0) ⊆ ISc . Specifically, this implies that there may exist a j ∈ ISc for

which DS:,j − (∆1):,j = 0, which will imply that PU⊥(DS:,j) = 0. This condition implies

that µ = 1. Therefore, we require span{col(L0)} = U and csupp(DS0) = ISc to hold

simultaneously for µ < 1.

Proof of Lemma 4.7. Let (L0,S0) be an optimal solution pair of (D-RPCA(C)). From the

optimality conditions (4.22) and (4.23), we seek Λ such that

Λ ∈UV> + W and D>Λ ∈ λcH +λcF. (4.35)

Now consider a feasible solution {L0 + D∆,S0 −∆} for a non-zero ∆ ∈ Rd×m. Then by

the optimality of (L0,S0) using the subgradient inequality, we have

‖L0 + D∆‖∗ +λc‖S0 −∆‖1,2 ≥ ‖L0‖∗ +λc‖S0‖1,2
+ 〈UV> + W,D∆〉 −λc〈H + F,∆〉.

Let G(∆) = 〈UV> + W,D∆〉 − λc〈H + F,∆〉. We will show that if (q1)-(q4) hold, then

G(∆) > 0, which proves the optimality of (L0,S0). Rewrite G(∆) as

G(∆) = 〈W,D∆〉 −λc〈F,∆〉+ 〈D>UV> −λcH,∆〉. (4.36)

Let W, with ‖W‖ = 1 and PL(W) = 0, then by duality of norms,

〈W,D∆〉 = 〈W,PL⊥(D∆)〉 = ‖PL⊥(D∆)‖∗. (4.37)

151

Further, let F, with ‖F‖∞,2 = 1 and PSc (F) = 0, be such that

F:,j =

−
∆:,j
‖∆:,j‖

, if j < ISc and ∆:,j , 0

0, otherwise
,

where F:,j denotes the jth column of F. Then, we arrive at the following simplification

for 〈F, ∆〉 by duality of norms,

〈F, ∆〉 = 〈F, PS⊥c (∆)〉 = − ‖PS⊥c (∆)‖1,2. (4.38)

Since PL(Λ) = UV> and PSc (D
>Λ) = λcH by optimality conditions of (4.35),

〈D>UV> −λcH,∆〉 = −〈PL⊥(Λ),D∆〉+ 〈PS⊥c (D>Λ),∆〉

≥ −‖PL⊥(D∆)‖∗‖PL⊥(Λ)‖

− ‖PS⊥c (∆)‖1,2‖PS⊥c (D>Λ)‖∞,2, (4.39)

where we use Holder’s inequality in the last step.

Combining (4.36), (4.37), (4.38), and (4.39), we have

G(∆) ≥ (1− ‖PL⊥(Λ)‖)‖PL⊥(D∆)‖∗
+ (λc − ‖PS⊥c (D>Λ)‖∞,2)‖PS⊥c (∆)‖1,2

Since we have an arbitrary ∆ with ∆ , 0 and (L0 + D∆,S0 −∆) < {U ,ISc }, ‖PL⊥(D∆)‖∗ =

‖PSc⊥(∆)‖1,2 = 0 does not hold. Therefore, to ensure the uniqueness of the solution

(L0,S0) , we need ‖PL⊥(Λ)‖ < 1 and ‖PS⊥c (D>Λ)‖∞,2 < λc. Hence, any dual certificate

which obeys the conditions (C1)-(C4) guarantees optimality of the solution.

Proof of Lemma 4.8. We begin by writing the definition of σmin(A>Sc) as

σmin(A>Sc) = min
H∈Sc/{0d×m}

‖A>vec(H)‖2
‖vec(H)‖2

.

By the definition of A and using the property of Kronecker product for multiplication

by a vector we have

σmin(A>Sc) = min
H∈Sc/{0d×m}

‖(I−PU)DH(I−PV)‖F
‖H‖F

.

152

Further (I−PU)DH (I−PV) = PL⊥(DH), and we can write that expression above as fol-

lows

σmin(A>Sc) = min
H∈Sc/{0d×m}

‖DH‖F
‖H‖F

· ‖(I−PL)(DH)‖F
‖DH‖F

(i)
≥
√
α`(1− max

Z∈D/{0n×m}
‖PL(Z)‖F
‖Z‖F

)
(ii)
≥
√
α`(1−µ).

Here (i) is due to the GFP condition D.4.2 and the reverse triangle inequality, and (ii)

from the incoherence property in (4.2).

Proof of Lemma 4.9. We start by using the correspondence between the vector bSc and

the matrix BSc , i.e.,

‖bSc‖2 = ‖BSc‖F = ‖λcS̃−PSc(D
>UV>)‖F.

Now, since S̃:,j = S:,j /‖S:,j‖2 for all j ∈ ISc ; and is 0 otherwise (i.e., when j < ISc), using

triangle inequality, we have

‖bSc‖2 ≤ λc
√
sc + ‖PSc (D

>UV>)‖F. (4.40)

Since we have

‖PSc (D
>UV>)‖2F ≤ ‖PL(UV>)‖F‖PL(DPSc (D

>UV>))‖F
(i)
≤µ‖UV>‖F‖DPSc (D

>UV>)‖F
(ii)
≤
√
rαuµ‖PSc (D

>UV>)‖F, (4.41)

where (i) is from subspace incoherence property and (ii) is from the GFP D.4.2. Com-

bining (4.40) and (4.41), we have

‖vec(BSc)‖2 ≤ λc
√
sc +
√
rαuµ.

Proof of Lemma 4.10. We begin by analyzing the quantity of interest – ‖PS⊥c (Z)‖∞,2, i.e.,

we are interested in the maximum column norm of the matrix PS⊥c (Z). Note that Z is

defined as

Z = D> (I−PU)X (I−PV) ,

153

and we have vec(Z) = Avec(X). Further, we have that

PS⊥c (vec(Z)) = AS⊥c vec(X).

Now, observe that the columns of matrix PS⊥c (Z) appear as blocks of size n × 1 in the

vector PS⊥c (vec(Z)). Moreover, the elements of vector PS⊥c (vec(Z)) are formed due to

the inner product between the rows of Kronecker product structured matrix AS⊥c and

vec(X). Therefore, to identify a column of PS⊥c (Z) we need to focus on the interaction

between correponding rows of AS⊥c and vec(X).

Consider the Kronecker product structured matrix AS⊥c . Since the rows in AS⊥c
correspond to all rows outside the column support Sc, this corresponds to selecting

those rows of m × m matrix (I − PV) which correspond to S⊥c , which we denote by

(I−PV)S⊥c i.e.,

AS⊥c = (I−PV)S⊥c ⊗D>(I−PU).

For simplicity of the upcoming analysis, we denote the matrix (I−PV) as

(I−PV) =


v11 · · · v1m
...

. . .
...

vm1 · · · vmm

.

Using this notation, the j-th block of vector PS⊥c (vec(Z)) (which is also the j-th column

of PS⊥c (Z)), can be written as

Z:,j = (vj,: ⊗D>(I−PU))vec(X)

for some j ∈ IS⊥c . Now, further since vec(X) := A>Sc(AScA
>
Sc)
−1vec(BSc), therefore we are

interested in maximum 2-norm of

Z:,j = (vj,: ⊗D>(I−PU))A>Sc(AScA
>
Sc)
−1vec(BSc),

for some j ∈ IS⊥c . Note that A>Sc itself is a Kronecker product structured matrix given

by

ASc = (I−PV)>Sc ⊗ (I−PU)D.

154

Using the mixed product rule for Kronecker products we have

Z:,j = (vj,:(I−PV)>Sc ⊗D>(I−PU)D)(AScA
>
Sc)
−1bSc ,

for some j ∈ IS⊥c . Further, since for two matrices A and B, ‖A⊗B‖ = ‖A‖‖B‖, we have

‖Z:,j‖ ≤ ‖e>j (I−PV)S⊥c (I−PV)>Sc‖

× ‖D>(I−PU)D‖‖(AScA
>
Sc)
−1‖‖bSc‖, (4.42)

where we also use the fact that vj,: = e>j (I −PV)S⊥c . We will now proceed to bound the

first term in (4.42). Note that

max
j∈S⊥c
‖e>j (I−PV)S⊥c (I−PV)>Sc‖

2

= max
j∈S⊥c

∑
i∈Sc
〈(I−PV)>ej , (I−PV)>ei〉2.

Now, each term in the summation can be bounded as

max
j∈S⊥c ,i∈Sc

|〈(I−PV)>ej , (I−PV)>ei〉|

= max
j∈S⊥c ,i∈Sc

| − 〈PVej ,PVei〉| ≤ ‖PVej‖‖PVei‖ ≤ γV.

This implies ‖e>j (I−PV)S⊥c (I−PV)>Sc‖ ≤
√
scγV. Further, note that ‖(AScA

>
Sc)
−1‖ ≤ ‖A−1

Sc ‖
2 =

1
σmin(ASc)

2 . Substituting this into (4.42), for a j ∈ S⊥c , we have

‖Z:,j‖ ≤
√
scγV

σmin(ASc)
2 ‖D>(I−PU)D‖‖bSc‖. (4.43)

We can further write ‖D>(I−PU)D‖ as follows

‖D>(I−PU)D‖ = max
‖u‖=1

‖(I−PU)Du‖2
‖Du‖2 ‖Du‖2 ≤ βUαu .

Substituting this result in (4.43), using Lemma 4.8 and Lemma 4.9,

‖PS⊥c (Z)‖∞,2 ≤
√
scCc(λc

√
sc +
√
rαuµ).

Chapter 5

Target Localization in

Hyperspectral Images

5.1 Overview

We consider the task of localizing targets of interest in a hyperspectral (HS) image

based on their spectral signature(s), by posing the problem as two distinct convex

demixing task(s). With applications ranging from remote sensing to surveillance, this

task of target detection leverages the fact that each material/object possesses its own

characteristic spectral response, depending upon its composition. However, since sig-

natures of different materials are often correlated, matched filtering-based approaches

may not be apply here. To this end, we model a HS image as a superposition of a low-

rank component and a dictionary sparse component, wherein the dictionary consists

of the a priori known characteristic spectral responses of the target we wish to localize,

and develop techniques for two different sparsity structures, resulting from different

model assumptions. We also present the corresponding recovery guarantees, leverag-

ing our theoretical results from Chapter 4. Finally, we analyze the performance of the

proposed approach via experimental evaluations on real HS datasets for a classification

task, and compare its performance with related techniques.

155

156

5.2 Introduction

Hyperspectral (HS) imaging is an imaging modality which senses the intensities of the

reflected electromagnetic waves (responses) corresponding to different wavelengths of

the electromagnetic spectra, often invisible to the human eye. As the spectral response

associated with an object/material is dependent on its composition, HS imaging lends

itself very useful in identifying the said target objects/materials via their characteristic

spectra or signature responses, also referred to as endmembers in the literature. Typical

applications of HS imaging range from monitoring agricultural use of land, catchment

areas of rivers and water bodies, food processing and surveillance, to detecting vari-

ous minerals, chemicals, and even presence of life sustaining compounds on distant

planets; see Borengasser et al. (2007); Park and Lu (2015), and references therein for

details. However, often, these spectral signatures are highly correlated, making it diffi-

cult to detect regions of interest based on these endmembers. In this work, we present

two techniques to localize target materials/objects in a given HS image based on some

structural assumptions on the data, using the a priori known signatures of the target

of interest.

The primary property that enables us to localize a target is the approximate low-

rankness of HS images when represented as a matrix, owing to the fact that a particular

scene is composed of only a limited type of objects/materials (Keshava and Mustard,

2002). For instance, while imaging an agricultural area, one would expect to record

responses from materials like biomass, farm vehicles, roads, houses, water bodies, and

so on. Moreover, the spectra of complex materials can be assumed to be a linear mix-

ture of the constituent materials (Keshava and Mustard, 2002; Greer, 2012), i.e. the

received HS responses can be viewed as being generated by a linear mixture model

(Xing et al., 2012). For the target localization task at hand, this approximate low-rank

structure is used to decompose a given HS image into a low-rank part, and a com-

ponent that is sparse in a known dictionary – a dictionary sparse part– wherein the

dictionary is composed of the spectral signatures of the target of interest. We begin by

formalizing the specific model of interest in the next section.

5.2.1 Model

A HS sensor records the response of a region, which corresponds to a pixel in the HS

image as shown in Fig. 5.1, to different frequencies of the electromagnetic spectrum.

157

Figure 5.1: The HS image data-cube corresponding to the Indian Pines dataset.

As a result, each HS image I ∈Rn×m×f , can be viewed as a data-cube formed by stacking

f matrices of size n ×m, as shown in Fig. 5.1. Therefore, each volumetric element or

voxel, of a HS image is a vector of length f , and represents the response of the material

to f measurement channels. Here, f is determined by the number of channels or

frequency bands across which measurements of the reflectances are made.

Formally, let M ∈ R
f ×nm be formed by unfolding the HS image I, such that, each

column of M corresponds to a voxel of the data-cube. We then model M as arising from

a superposition of a low-rank component L ∈ R
f ×nm with rank r, and a dictionary-

sparse component, expressed as DS, i.e.,

M = L + DS. (5.1)

Here, D ∈ R
f ×d represents an a priori known dictionary composed of appropriately

normalized characteristic responses of the material/object (or the constituents of the

material), we wish to localize, and S ∈ R
d×nm refers to the sparse coefficient matrix

(also referred to as abundances in the literature). Note that D can also be constructed by

learning a dictionary based on the known spectral signatures of a target; see Olshausen

and Field (1997); Aharon et al. (2005); Mairal et al. (2010); Lee et al. (2007).

5.2.2 Our Contributions

In this work, we present two techniques1 for target detection in a HS image, depending

upon different sparsity assumptions on the matrix S, by modeling the data as shown

in (5.1). Building on the theoretical results of Chapter 4 (and Rambhatla et al. (2016b);

Li et al. (2018b); Rambhatla et al. (2018a)), our techniques operate by forming the

dictionary D using the a priori known spectral signatures of the target of interest, and

1The code is made available at github.com/srambhatla/Dictionary-based-Robust-PCA.

github.com/srambhatla/Dictionary-based-Robust-PCA

158

20 40 60 80 100 120 140 160 180 200
Channels

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
ef

le
ct

an
ce

s

Wheat
Corn
Alfalfa
Stone-Steel

Figure 5.2: Correlated spectral signatures. The spectral signatures of even different materials
are highly correlated. Shown here are spectral signatures of classes from the Indian Pines
dataset (Baumgardner et al., 2015). Here, the shaded region shows the lower and upper ranges
of reflectance values the signatures take.

leveraging the approximate low-rank structure of the data matrix M (Rambhatla et al.,

2017b). Here, the dictionary D can be formed from the a priori known signatures

directly, or by learning an appropriate dictionary based on target data; see Olshausen

and Field (1997); Aharon et al. (2005); Mairal et al. (2010); Lee et al. (2007).

We consider two types of sparsity structures for the coefficient matrix S, namely,

a) global or entry-wise sparsity, wherein we let the matrix S have se non-zero entries

globally, and b) column-wise sparse structure, where at most sc columns of the matrix

S have non-zero elements. The choice of a particular sparsity model depends on the

properties of the dictionary matrix D. In particular, if the target signature admits a

sparse representation in the dictionary, entry-wise sparsity structure is preferred. This

is likely to be the case when the dictionary is overcomplete (f < d) or fat, and also

when the target spectral responses admit a sparse representation in the dictionary.

On the other hand, the column-wise sparsity structure is amenable to cases where the

representation can use all columns of the dictionary. This potentially arises in the cases

when the dictionary is undercomplete (f ≥ d) or thin. Note that, in the column-wise

sparsity case, the non-zero columns need not be sparse themselves. The applicability of

these two modalities is also exhibited in our experimental analysis; see Section 5.6 for

further details. Further, we specialize the theoretical results of Chapter 4, to present

the conditions under which such a demixing task will succeed under the two sparsity

models discussed above; see also Rambhatla et al. (2016b) and Li et al. (2018b).

159

Next, we analyze the performance of the proposed techniques via extensive experi-

mental evaluations on real-world demixing tasks over different datasets and dictionary

choices, and compare the performance of the proposed techniques with related works.

This demixing task is particularly challenging since the spectral signatures of even dis-

tinct classes are highly correlated to each other, as shown in Fig. 5.2. The shaded region

here shows the upper and lower ranges of different classes. For instance, in Fig. 5.2 we

observe that the spectral signature of the “Stone-Steel” class is similar to that of class

“Wheat”. This correlation between the spectral signatures of different classes results in

an approximate low-rank structure of the data, captured by the low-rank component

L, while the dictionary-sparse component DS is used to identify the target of inter-

est. We specifically show that such a decomposition successfully localizes the target

despite the high correlation between spectral signatures of distinct classes.

Finally, it is worth noting that although we consider thin dictionaries (f ≥ d) for

the purposes of this work, since it is more suitable for the current exposition, our

theoretical results are also applicable for the fat case (f < d); see Chapter 4, Rambhatla

et al. (2016b), Li et al. (2018b), and Rambhatla et al. (2018a) for further details.

5.2.3 Prior Art

The model shown in (5.1) is closely related to a number of well-known problems. To

start, in the absence of the dictionary sparse part DS, (5.1) reduces to the popular

problem of principal component analysis (PCA) (Pearson, 1901; Jolliffe, 2002). The

problem considered here also shares its structure with variants of PCA, such as robust-

PCA (Candès et al., 2011; Chandrasekaran et al., 2011) (with D = I for an identity

matrix I,) outlier pursuit (Xu et al., 2010) (where D = I and S is column-wise sparse,)

and others (Zhou et al., 2010; Ding et al., 2011; Wright et al., 2013; Chen et al., 2013;

Li and Haupt, 2015a,b,c, 2016; Li et al., 2016a).

On the other hand, the problem can be identified as that of sparse recovery (Natara-

jan, 1995; Donoho and Huo, 2001b; Candès and Tao, 2005; Rambhatla and Haupt,

2013b), in the absence of the low-rank part L. Following which, sparse recovery meth-

ods for analysis of HS images have been explored in (Moudden et al., 2009; Bobin

et al., 2009; Kawakami et al., 2011; Charles et al., 2011). In addition, in a recent work

(Giampouras et al., 2016), the authors further impose a low-rank constraint on the co-

efficient matrix S for the demixing task. Further, applications of compressive sampling

have been explored in Golbabaee et al. (2010), while Xing et al. (2012) analyzes the case

160

where HS images are noisy and incomplete. The techniques discussed above focus on

identifying all materials in a given HS image. However, for target localization tasks, it

is of interest to identify only specific target(s) in a given HS image. As a result, there

is a need for techniques which localize targets based on their a priori known spectral

signatures.

The model described in (5.1) was introduced in Mardani et al. (2013) as a means to

detect traffic anomalies in a network, wherein, the authors focus on a case where the

dictionary D is overcomplete, i.e., fat, and the rows of D are orthogonal, e.g., RR> = I.

Here, the coefficient matrix S is assumed to possess at most k nonzero elements per

row and column, and s nonzero elements globally. In a recent work (Rambhatla et al.,

2016b) and the accompanying theoretical work (Rambhatla et al., 2018a) (presented

in Chapter 4), we analyze the extension of Mardani et al. (2013) to include a case

where the dictionary has more rows than columns, i.e., is thin, while removing the

orthogonality constraint for both the thin and the fat dictionary cases, when s is small.

This case is particularly amenable for the target localization task at hand, since often

we aim to localize targets based on a few a priori known spectral signatures. To this

end, we focus our attention on the thin case, although a similar analysis applies for the

fat case (Rambhatla et al., 2016b); see also Chapter 4 and Rambhatla et al. (2018a).

5.2.4 Related Techniques

To study the properties of our techniques, we compare and contrast their performance

with related works. First, as a sanity check, we compare the performance of the pro-

posed techniques with matched filtering-based methods (detailed in Section 5.6). In

addition, we compare the performance of our techniques to other closely related meth-

ods based on the sparsity assumptions on the matrix S, as described below.

For entry-wise sparse structure: The first method we compare to is based on the ob-

servation that in cases where the known dictionary D is thin, we can multiply (5.1) on

the left by the pseudo-inverse of D, say D†, in which case, the model shown in (5.1)

reduces to that of robust PCA, i.e.,

M̃ = L̃ + S, (RPCA†)

where M̃ = D†M and L̃ = D†L. Therefore, in this case, we can recover the sparse matrix

S by robust PCA (Candès et al., 2011; Chandrasekaran et al., 2011), and estimate the

161

low-rank part using the estimate of DS. Note that this is not applicable for the fat case

due to the non-trivial null space of its pseudo-inverse.

Although at a first glance this seems like a reasonable technique, somewhat sur-

prisingly, it does not succeed for all thin dictionaries. Specifically, in cases where r, the

rank of L, is greater than the number of dictionary elements d, the pseudo-inversed

component L̃ is no longer “low-rank.” In fact, since the notion of low-rankness is rela-

tive to the potential maximum rank of the component, L̃ can be close to full-rank. As a

result, the robust PCA model shown in RPCA† is no longer applicable and the demix-

ing task may not succeed; see Chapter 4 and Rambhatla et al. (2018a) for details.

Moreover, even in cases where RPCA† succeeds (r < d), our proposed one-shot pro-

cedure guarantees the recovery of the two components under some mild conditions,

while the pseudo-inverse based procedure RPCA† will require a two-step procedure

– one to recover the sparse coefficient matrix and other to recover the low-rank com-

ponent – in addition to a non-trivial analysis of the interaction between D† and the

low-rank part L. This is also apparent from our experiments shown in Section 5.6,

which indicate that optimization based on the model in (5.1) is more robust as com-

pared to RPCA† for the classification problem at hand across different choices of the

dictionaries.

For column-wise sparse structure: The column-wise sparse structure of the matrix S

results in a column-wise sparse structure of the dictionary-sparse component DS. As a

result, the model at hand is similar to that studied in OP (Xu et al., 2010). Specifically,

the OP technique is aimed at identifying the outlier columns in a given matrix. How-

ever, it fails in cases where the target of interest is not an outlier, as in case of HS data.

On the other hand, since the proposed technique uses the dictionary D corresponding

to the spectral signatures of the target of interest to guide the demixing procedure, it

results in a spectral signature-driven technique for target localization. This distinction

between the two procedures is also discussed in our corresponding theoretical work

presented in Chapter 4 Section 4.5, and is exemplified by our experimental results

shown in Section 5.6.

Further, as in the entry-wise case, one can also envision a pseudo-inverse based

162

procedure to identify the target of interest via OP (Xu et al., 2010) on the pseudo-

inversed data (referred to as OP† in our discussion) i.e.,

M̃ = L̃ + S, (OP†)

where M̃ = D†M and L̃ = D†L, with S admitting a column-wise sparse structure. How-

ever, this variant of OP does not succeed when the rank of the low-rank component is

greater than the number of dictionary elements, i.e., r ≥ d, as in the previous case; see

Section 4.5 of Chapter 4 for details.

The rest of the chapter is organized as follows. We formulate the problem and

introduce relevant theoretical quantities in Section 5.3, followed by specializing the

theoretical results for the current application in Section 5.4. Next, in Section 5.5, we

present the specifics of the algorithms for the two cases. In Section 5.6, we describe the

experimental set-up and demonstrate the applicability of the proposed approaches via

extensive numerical simulations on real HS datasets for a classification task. Finally,

we conclude this discussion in Section 5.7.

5.3 Problem Formulation

In this section, we introduce the optimization problem of interest and different theo-

retical quantities pertinent to our analysis. These are motivated from our analysis in

Chapter 4 Section 4.3; we outline these conditions in this section for completeness and

instantiate them for our problem of interest.

5.3.1 Optimization problems

Our aim is to recover the low-rank component L and the sparse coefficient matrix S,

given the dictionary D and samples M generated according to the model shown in

(5.1). Here the coefficient matrix S can either have an entry-wise sparse structure or a

column-wise sparse structure. We now crystallize our model assumptions to formulate

appropriate convex optimization problems for the two sparsity structures.

Specifically, depending upon the priors about the sparsity structure of S, and the

163

low-rank property of the component L, we aim to solve the following convex optimiza-

tion problems, i.e.,

min
L,S
‖L‖∗ +λe‖S‖1 s.t. M = L + DS (D-RPCA(E))

for the entry-wise sparsity case, and

min
L,S
‖L‖∗ +λc‖S‖1,2 s.t. M = L + DS (D-RPCA(C))

for the column-wise sparse case, to recover L and S with regularization parameters

λe ≥ 0 and λc ≥ 0, given the data M and the dictionary D. Here, the a priori known

dictionary D is assumed to be undercomplete (thin, i.e., d ≤ f) for the application at

hand. Analysis of a more general case can be found in Chapter 4 (and Rambhatla

et al. (2018a)). Further, here “D-RPCA” refers to “dictionary based robust principal

component analysis”, while the qualifiers “E” and “C” indicate the entry-wise and

column-wise sparsity patterns, respectively.

Note that, in the column-wise sparse case there is an inherent ambiguity regarding

the recovery of the true component pairs (L,S) corresponding to the low-rank part and

the dictionary sparse component, respectively. Specifically, any pair (L0,S0) satisfying

M = L0 + DS0 = L + DS, where L0 and L have the same column space, and S0 and S

have the identical column support, is a solution of D-RPCA(C). To this end, we define

the following oracle model to characterize the optimality of any solution pair (L0,S0).

Definition 5.1 (Oracle Model for Column-wise Sparse Case). Let the pair (L,S) be

the matrices forming the data M as per (5.1), define the corresponding oracle model

{M,U ,ISc }. Then, any pair (L0,S0) is in the Oracle Model {M,U ,ISc }, if PU (L0) = L,

PSc(DS0) = DS and L0 + DS0 = L + DS = M hold simultaneously, where PU and PSc are

projections onto the column space U of L and column support ISc of S, respectively.

For this case, we then first establish the sufficient conditions for the existence of

a solution based on some incoherence conditions. Following which, our main result

for the column-wise case states the sufficient conditions under which solving a convex

optimization problem recovers a solution pair (L0,S0) in the oracle model.

164

5.3.2 Conditions on the Dictionary

For our analysis, we require that the dictionary D follows the generalized frame property

(GFP) defined as follows.

Definition 5.2. A matrix D satisfies the generalized frame property (GFP), on vectors

v ∈ R, if for any fixed vector v ∈ R where v , 0, we have

α`‖v‖22 ≤ ‖Dv‖22 ≤ αu‖v‖
2
2,

where α` and αu are the lower and upper generalized frame bounds with 0 < α` ≤ αu <∞.

The GFP is met as long as the vector v is not in the null-space of the matrix D,

and ‖D‖ is bounded. Therefore, for the thin dictionary setting d < n for both entry-

wise and column-wise sparsity cases, this condition is satisfied as long as D has a full

column rank, andR can be the entire space. For example, D being a frame (Duffin and

Schaeffer, 1952) suffices; see Heil (2013) for a brief overview of frames.

5.3.3 Relevant Subspaces

Before we define the relevant subspaces for this discussion, we define a few prelimi-

naries. First, let the pair (L0,S0) be the solution to D-RPCA(E) (the entry-wise sparse

case), and for the column-wise sparse case, let the pair (L0,S0) be in the oracle model

{M,U ,ISc }; see Definition D.5.1.

Next, for the low-rank matrix L, let the compact singular value decomposition

(SVD) be represented as

L = UΣV>,

where U ∈Rf ×r and V ∈Rnm×r are the left and right singular vectors of L, respectively,

and Σ is a diagonal matrix with singular values arranged in a descending order on the

diagonal. Here, matrices U and V each have orthogonal columns. Further, let L be the

linear subspace consisting of matrices spanning the same row or column space as L,

i.e.,

L := {UW>1 + W2V>,W1 ∈Rnm×r ,W2 ∈Rf ×r}.

165

Next, let Se (Sc) be the space spanned by d × nm matrices with the same non-zero

support (column support, denoted as csupp) as S, and let D be defined as

D := {DH},where

H ∈ Se for entry-wise case,

csupp(H) ⊆ ISc for column-wise case.

Here, ISc denotes the index set containing the non-zero column indices of S for the

column-wise sparsity case. In addition, we denote the corresponding complements of

the spaces described above by appending ‘⊥’.

We use calligraphic ‘P (·)’ to denote the projection operator onto a subspace defined

by the subscript, and ‘P’ to denote the corresponding projection matrix with the ap-

propriate subscripts. Therefore, using these definitions the projection operators onto

and orthogonal to the subspace L are defined as

PL(L) = PUL + LPV −PULPV

and

PL⊥(L) = (I−PU)L(I−PV),

respectively.

5.3.4 Incoherence Measures

We also employ various notions of incoherence to identify the conditions under which

our procedures succeed. To this end, we first define the incoherence parameter µ that

characterizes the relationship between the low-rank part L and the dictionary sparse

part DS, as

µ := max
Z∈D\{0d×nm}

‖PL(Z)‖F
‖Z‖F

. (5.2)

The parameter µ ∈ [0,1] is the measure of degree of similarity between the low-rank

part and the dictionary sparse component. Here, a larger µ implies that the dictionary

166

sparse component is close to the low-rank part. In addition, we also define the param-

eter βU as

βU := max
‖u‖=1

‖(I−PU)Du‖2
‖Du‖2 , (5.3)

which measures the similarity between the orthogonal complement of the column-

space U and the dictionary D.

The next two measures of incoherence can be interpreted as a way to identify the

cases where for L with SVD as L = UΣV>: (a) U resembles the dictionary D, and (b) V

resembles the sparse coefficient matrix S. In these cases, the low-rank part may resem-

ble the dictionary sparse component. To this end, similar to Mardani et al. (2013), we

define the following measures to identify these cases as

(a) γU := max
i

‖PUDei‖2
‖Dei‖2

and (b) γV := max
i
‖PVei‖2. (5.4)

Here, 0 ≤ γU ≤ 1 achieves the upper bound when a dictionary element is exactly

aligned with the column space U of the L, and lower bound when all of the dictio-

nary elements are orthogonal to U . Moreover, γV∈ [r/nm,1] achieves the upper bound

when the row-space of L is “spiky”, i.e., a certain row of V is 1-sparse, meaning that

a column of L is supported by (can be expressed as a linear combination of) a column

of U. The lower bound here is attained when it is “spread-out”, i.e., each column of L

is a linear combination of all columns of U. In general, our recovery of the two com-

ponents is easier when the incoherence parameters γU and γV are closer to their lower

bounds. In addition, for notational convenience, we define constants

ξe := ‖D>UV>‖∞ and ξc := ‖D>UV>‖∞,2. (5.5)

Here, ξe is the maximum absolute entry of D>UV>, which measures how close columns

of D are to the singular vectors of L. Similarly, for the column-wise case, ξc measures

the closeness of columns of D to the singular vectors of L under a different metric

(column-wise maximal `2-norm).

167

5.4 Theoretical Results

In this section, we specialize our theoretical results presented in Chapter 4 for the HS

demixing task. Specifically, we provide the main results corresponding to each sparsity

structure of S for the thin dictionary case considered here. We start with the theoretical

results for the entry-wise sparsity case, and then present the corresponding theoretical

guarantees for the column-wise sparsity structure; see Chapter 4 for detailed proofs.

5.4.1 Exact Recovery for Entry-wise Sparsity Case

For the entry-wise case, our main result establishes the existence of a regularization

parameter λe, for which solving the optimization problem D-RPCA(E) will recover the

components L and S exactly. To this end, we will show that such a λe belongs to a

non-empty interval [λmin
e ,λmax

e], where λmin
e and λmax

e are defined as

λmin
e := 1+Ce

1−Ce ξe and λmax
e :=

√
α`(1−µ)−√rαuµ√

se
. (5.6)

Here, Ce(αu ,α`,γU,γV, se,d,k,µ) where 0 ≤ Ce < 1 is a constant that captures the rela-

tionship between different model parameters, and is defined as

Ce := c
α`(1−µ)2−c ,

where c = αu
2 ((1+2γU)(min(se,d)+seγV)+2γV min(se,nm))− α`2 (min(se,d)+seγV). Given

these definitions, we have the following result for the entry-wise sparsity structure.

Theorem 5.1. Suppose M = L + DS, where rank(L) = r and S has at most se non-zeros,

i.e., ‖S‖0 ≤ se ≤ smax
e := (1−µ)2

2
nm
r , and the dictionary D ∈ R

f ×d for d ≤ f obeys the

generalized frame property (4.2) with frame bounds [α`,αu], where 0 < α` ≤ 1
(1−µ)2 ,

and γU follows

γU ≤


(1−µ)2−2seγV

2se(1+γV) , for se ≤min (d,smax
e)

(1−µ)2−2seγV
2(d+seγV) , for d < se ≤ smax

e .
(5.7)

Then given µ ∈ [0,1], γU and γV ∈ [r/nm,1], and ξe defined in (5.2), (4.4), (5.5),

respectively, λe ∈ [λmin
e ,λmax

e] with λmax
e > λmin

e ≥ 0 defined in (4.6), solving D-RPCA(E)

will recover matrices L and S.

168

We observe that the conditions for the recovery of (L,S) are closely related to the

incoherence measures (µ, γV, and γU) between the low-rank part, L, the dictionary,

D, and the sparse component S. In general, smaller sparsity, rank, and incoherence

parameters are sufficient for ensuring the recovery of the components for a particular

problem. This is in line with our intuition that the more distinct the two components,

the easier it should be to tease them apart. For our HS demixing problem, this indi-

cates that a target of interest can be localized as long as its the spectral signature is

appropriately different from the other materials in the scene.

5.4.2 Recovery for Column-wise Sparsity Case

For the column-wise sparsity model, recall that any pair in the oracle model described

in D.5.1 is considered optimal. To this end, we first establish the sufficient conditions

for the existence of such an optimal pair (L0,S0) by the following lemma.

Lemma 5.1. Given M, D, and (L,Sc,D), any pair (L0,S0) ∈ {M,U ,ISc } satisfies span{col(

L0)} = U and csupp(S0) = ISc if µ < 1.

In essence, we need the incoherence parameter µ to be strictly smaller than 1. Next,

analogous to the entry-wise case, we show that λc belongs to a non-empty interval

[λmin
c ,λmax

c], using which solving D-RPCA(C) recovers an optimal pair in the oracle

model D.5.1 in accordance with Lemma 5.1. Here, for a constant Cc := αu
α`

1
(1−µ)2γVβU,

λmin
c and λmax

c are defined as

λmin
c := ξc+

√
rscαuµCc

1−scCc and λmax
c :=

√
α`(1−µ)−√rαuµ√

sc
. (5.8)

This leads us to the following result for the column-wise case.

Theorem 5.2. Suppose M = L + DS with (L,S) defining the oracle model {M,U ,ISc },
where rank(L) = r, |ISc | = sc for sc ≤ smax

c := α`
αuγV

· (1−µ)2

βU
. Given µ ∈ [0,1), βU, γV ∈

[r/nm,1], ξc as defined in (5.2), (5.3), (5.4), (5.5), respectively, and any λc ∈ [λmin
c ,λmax

c],

for λmax
c > λmin

c ≥ 0 defined in (5.8), solving D-RPCA(C) will recover a pair of com-

ponents (L0,S0) ∈ {M,U ,ISc }, if the dictionary D ∈ Rf ×d obeys the generalized frame

property D.5.2 with frame bounds [α`,αu], for α` > 0.

Theorem 5.2 outlines the sufficient conditions under which the solution to the op-

timization problem D-RPCA(C) will be in the oracle model defined in D.5.1. Here,

169

Algorithm 4: APG Algorithm for D-RPCA(E) and D-RPCA(C), adapted from
Mardani et al. (2013)

Require: M, D, λ, v, ν0, ν̄, and Lf = λmax ([I D]>[I D])
Initialize: L[0] = L[−1] = 0L×T , S[0] = S[−1] = 0F×T , t[0] = t[−1] = 1, and set k = 0.

while not converged do

Generate points TL[k] and TS [k] using momentum:

TL[k] = L[k] + t[k−1]−1
t[k] (L[k]−L[k − 1]),

TS [k] = S[k] + t[k−1]−1
t[k] (S[k]−S[k − 1]).

Take a gradient step using these points :

GL[k] = TL[k] + 1
Lf

(M−TL[k]−DTS [k]),

GS [k] = TS [k] + 1
Lf

D>(M−TL[k]−DTS [k]).

Update Low-rank part via singular value thresholding:

UΣV> = svd(GL[k]),
L[k + 1] = USν[k]/Lf (Σ)V>.

Update the Dictionary Sparse part:

S[k + 1] =

Sν[k]λe/Lf (GS [k]), for D-RPCA(E),

Cν[k]λc/Lf (GS [k]), for D-RPCA(C).

Update the momentum term parameter t[k + 1]:

t[k + 1] =
1+
√

4t2[k]+1
2 .

Update the continuation parameter ν[k + 1]:

ν[k + 1] = max{vν[k], ν̄}.

k← k + 1
end while

return L[k], S[k]

for a case where 1 . αl ≤ αu . 1, which can be easily met by a tight frame when f > d,

constant (1−µ)2

βU
, and γV = Θ(r

nm), we have smax
c = O(nmr), which is of same order as in the

Outlier Pursuit (OP) (Xu et al., 2010). Moreover, our numerical results in Chapter 4

show that D-RPCA(C) can be much more robust than OP, and may recover {U ,IC} even

when the rank of L is high and the number of outliers sc is a constant proportion of

m. This implies that, D-RPCA(C) will succeed as long as the dictionary D can success-

fully represent the target of interest while rejecting the columns of the data matrix M

corresponding to materials other than the target.

170

5.5 Algorithmic Considerations

The optimization problems of interest, D-RPCA(E) and D-RPCA(C), for the entry-wise

and column-wise case, respectively, are convex but non-smooth. To solve for the com-

ponents of interest, we adopt the accelerated proximal gradient (APG) algorithm, as

shown in Algorithm 4. Note that Mardani et al. (2013) also applied the APG algo-

rithm for D-RPCA(E), and we present a unified algorithm for both sparsity cases for

completeness.

5.5.1 Background

The APG algorithm is motivated from a long line of work starting with Nesterov

(1983), which showed the existence of a first order algorithm with a convergence rate of

O(1/k2) for a smooth convex objective, where k denotes the iterations. Following this,

Beck and Teboulle (2009) developed the popular fast iterative shrinkage-thresholding

algorithm (FISTA) which achieves this convergence rate for convex non-smooth objec-

tives by accelerating the proximal gradient descent algorithm using a momentum term

(the term t[k−1]−1
t[k] in Algorithm 4) as prescribed by Nesterov (1983). As a result, it

became a staple to solve a wide range of convex non-smooth tasks including matrix

completion Toh and Yun (2010), and robust PCA (Chen et al., 2009) and its variants

(Mardani et al., 2013; Xu et al., 2010). Also, recently Karimi et al. (2016) has shown

further improvements in the rate of convergence.

In addition to the momentum term, the APG procedure operates by evaluating the

gradient at a point further in the direction pointed by the negative gradient. Along

with faster convergence, this insight about the next point minimizes the oscillations

around the optimum point; see Beck and Teboulle (2009) and references therein.

5.5.2 Discussion of Algorithm 4

For the optimization problem of interest, we solve an unconstrained problem by trans-

forming the equality constraint to a least-square term which penalizes the fit. In par-

ticular, the problems of interest we will solve via the APG algorithm are given by

min
L,S

ν‖L‖∗ + νλe‖S‖1 + 1
2‖M−L−DS‖2F (5.9)

171

for the entry-wise sparsity case, and

min
L,S

ν‖L‖∗ + νλc‖S‖1,2 + 1
2‖M−L−DS‖2F, (5.10)

for the column-wise sparsity case. We note that although for the application at hand,

the thin dictionary case with (f ≥ d) might be more useful in practice, Algorithm 4

allows for the use of fat dictionaries (f < d) as well.

Algorithm 4 also employs a continuation technique (Chen et al., 2009), which can

be viewed as a “warm start” procedure. Here, we initialize the parameter ν0 at some

large value and geometrically reduced until it reaches a value ν̄. A smaller choice

of ν̄ results in a solution which is closer to the optimal solution of the constrained

problem. Further, as ν approaches zero, (5.9) and (5.10) recover the optimal solution

of D-RPCA(E) and D-RPCA(C), respectively. Moreover, Algorithm 4 also utilizes the

knowledge of the smoothness constant Lf (the Lipschitz constant of gradient) to set

the step-size parameter.

Specifically, the APG algorithm requires that the gradient of the smooth part,

f (L,S) := 1
2‖M−L−DS‖2F = 1

2‖M−
[
I D

]LS
‖2F

of the convex objectives shown in (5.9) and (5.10) is Lipschitz continuous with mini-

mum Lipschitz constant Lf . Now, since the gradient ∇f (L,S) with respect to
[
L S

]>
is

given by

∇f (L,S) =
[
I D

]>
(M−

[
I D

]LS
),

we have that the gradient ∇f is Lipschitz continuous as

‖∇f (L1,S1)−∇f (L2,S2)‖ ≤ Lf ‖

L1

S1

−
L2

S2

‖,
where

Lf = ‖
[
I D

]> [
I D

]
‖ = λmax(

[
I D

]> [
I D

]
),

172

as shown in Algorithm 4.

The update of the low-rank component and the sparse matrix S for the entry-wise

case, both involve a soft thresholding step, Sτ (.), where for a matrix Y, Sτ (Yij) is defined

as

Sτ (Yij) = sgn(Yij)max(|Yij − τ |,0).

In case of the low-rank part we apply this function to the singular values (therefore

referred to as singular value thresholding) (Toh and Yun, 2010), while for the update of

the dictionary sparse component, we apply it to the sparse coefficient matrix S.

The low-rank update step for the column-wise case remains the same as for the

entry-wise case. However, for the update of the column-wise case we threshold the

columns of S based on their column norms, i.e., for a column Yj of a matrix Y, the

column-norm based soft-thresholding function, Cτ (.) is defined as

Cτ (Yj) = max(Yj − τYj /‖Yj‖).

5.5.3 Parameter Selection

Since the choice of regularization parameters by our main theoretical results contain

quantities (such as incoherence etc.) that cannot be evaluated in practice, we employ

a grid-search strategy over the range of admissible values for the low-rank and dictio-

nary sparse component to find the best values of the regularization parameters. We

now discuss the specifics of the grid-search for each sparsity case.

Selecting parameters for the entry-wise case

The choice of parameters ν and λe in Algorithm 4 is based on the optimality conditions

of the optimization problem shown in (5.9). As presented in Mardani et al. (2013), the

range of parameters ν and νλe associated with the low-rank part L and the sparse

coefficient matrix S, respectively, lie in ν ∈ {0,‖M‖} and νλe ∈ {0,‖D>M‖∞}, i.e., for

Algorithm 4 ν0 = ‖M‖.
These ranges for ν and νλe are derived using the optimization problem shown in

(5.9). Specifically, we find the largest values of these regularization parameters which

yield a (0,0) solution for the pair (L0,S0) by analyzing the optimality conditions of

173

(5.9). This value of the regularization parameter then defines the upper bound on the

range. For instance, let λ∗ := ν and λ1 := νλe, then the optimality condition is given by

λ∗∂L‖L‖∗ − (M−L−DS) = 0,

where the sub-differential set ∂L‖L‖∗ is defined as

∂L‖L‖∗
∣∣∣∣
L=L0

= {UV> + W : ‖W‖ ≤ 1,PL(W) = 0}.

Therefore, for a zero solution pair (L0,S0) we have that

{λ∗W = M : ‖W‖ ≤ 1,PL(W) = 0},

which yields the condition that ‖M‖ ≤ λ∗. Therefore, the maximum value of λ∗ which

drives the low-rank part to an all-zero solution is ‖M‖.
Similarly, for the dictionary sparse component the optimality condition for choos-

ing λ1 is given by

λ1∂S‖S‖1 −D>(M−L−DS) = 0,

where the the sub-differential set ∂S‖S‖1 is defined as

∂S‖S‖1
∣∣∣∣
S=S0

= {sign(S0) + F : ‖F‖∞ ≤ 1,PSe (F) = 0}.

Again, for a zero solution pair (L0,S0) we need that

{λ1F = D>M : ‖F‖∞ ≤ 1,PSe(F) = 0},

which implies that ‖D>M‖∞ ≤ λ1. Meaning, that the maximum value of λ1 that drives

the dictionary sparse part to zero is ‖D>M‖∞.

Selecting parameters for the column-wise case

Again, the choice of parameters ν and λc is derived from the optimization problem

shown in (5.10). In this case, the range of parameters ν and νλc associated with the

low-rank part L and the sparse coefficient matrix S, respectively, lie in ν ∈ {0,‖M‖}
and νλe ∈ {0,‖D>M‖∞,2}, i.e., for Algorithm 4 ν0 = ‖M‖. The range of regularization

174

None
1. Alfalfa
2. Corn (No till)
3. Corn (Min till)
4. Corn
5. Grass-pasture
6. Grass-trees
7. Grass-pasture-mowed
8. Hay-windrowed
9. Oats
10. Soybean (No till)
11. Soybean (Min till)
12. Soybean (clean)
13. Wheat
14. Woods
15. Buildings-Grass-Trees-Drives
16. Stone-Steel-Towers

Ground-truth Classes
None
1. Asphalt
2. Meadows
3. Gravel
4. Trees
5. Painted Metal Sheets
6. Bare Soil
7. Bitumen
8. Self-Blocking Bricks
9. Shadows

Ground-truth Classes

(a) Indian Pines (b) Pavia University

Figure 5.1: Ground-truth classes in the datasets. Panels (a) and (b) show the ground truth
classes for the Indian Pines dataset (Baumgardner et al., 2015) and Pavia University dataset
(Gamba, 2002), respectively.

parameters are evaluated using the analysis similar to the entry-wise case, by analyzing

the optimality conditions for (5.10), instead of (5.9).

5.6 Experimental Evaluation

We now evaluate the performance of the proposed technique on real HS data2. We

begin by introducing the dataset used for the simulations, following which we describe

the experimental set-up and present the results.

5.6.1 Data

Indian Pines Dataset: We first consider the “Indian Pines” dataset (Baumgardner

et al., 2015), which was collected over the Indian Pines test site in North-western

Indiana in the June of 1992 using the Airborne Visible/Infrared Imaging Spectrom-

eter (AVIRIS) (of Technology, 1987) sensor, a popular choice for collecting HS images

for various remote sensing applications. This dataset consists of spectral reflectances

across 224 bands in wavelength of ranges 400 − 2500 nm from a scene which is com-

posed mostly of agricultural land along with two major dual lane highways, a rail

2The code is made available at https://github.com/srambhatla/Dictionary-based- Robust-PCA;
see Chapter 7 for details.

175

line and some built structures, as shown in Fig. 5.1(a). The dataset is further pro-

cessed by removing the bands corresponding to those of water absorption, which re-

sults in a HS data-cube with dimensions {145 × 145 × 200} is as visualized in Fig. 5.1.

Here, n = m = 145 and f = 200. This modified dataset is available as “corrected In-

dian Pines” dataset (Baumgardner et al., 2015), with the ground-truth containing 16

classes; Henceforth, referred to as the “Indian Pines Dataset”. We form the data ma-

trix M ∈ R
f ×nm by stacking each voxel of the image side-by-side, which results in a

{200 × 1452} data matrix M. We will analyze the performance of the proposed tech-

nique for the identification of the stone-steel towers (class 16 in the dataset), shown in

Fig. 5.1(a), which constitutes about 93 voxels in the dataset.

Pavia University Dataset: Acquired using Reflective Optics System Imaging Spec-

trometer (ROSIS) sensor, the Pavia University Dataset (Gamba, 2002) consists of spec-

tral reflectances across 103 bands (in the range 430 − 860 nm) of an urban landscape

over northern Italy. The selected subset of the scene, a {201 × 131 × 103} data-cube,

mainly consists of buildings, roads, painted metal sheets and trees, as shown in Fig. 5.1(b).

Note that class-3 corresponding to “Gravel” is not present in the selected data-cube

considered here. For our demixing task, we will analyze the localization of target class

5, corresponding to the painted metal sheets, which constitutes 707 voxels in the scene.

Note that for this dataset n = 201, m = 131 and f = 103.

5.6.2 Dictionary

We form the known dictionary D two ways: 1) where a (thin) dictionary is learned

based on the voxels using Algorithm 5, and 2) when the dictionary is formed by ran-

domly sampling voxels from the target class. This is to emulate the ways in which we

can arrive at the dictionary corresponding to a target – 1) where the exact signatures are

not available, and/or there is noise, and 2) where we have access to the exact signatures

of the target, respectively. Note that, the optimization procedures for D-RPCA(E) and

D-RPCA(C) are agnostic to the selection of the dictionary.

In our experiments for case 1), we learn the dictionary using the target class data

Y ∈ R
f ×p via Algorithm 5, which (approximately) solves the following optimization

176

Algorithm 5: Dictionary Learning (Mairal et al., 2010; Lee et al., 2007)

Require: Data Y ∈ R
f ×p, regularization parameter ρ, and the number of dictio-

nary elements d.
Ensure: The dictionary D ∈Rf ×d
Initialize: Â← 0d×p, D̂ withN (0,1) entries and columns normalized to have norm

1, Ŷ = D̂Â, and tolerance ε .

while ‖Y−Ŷ‖F
‖Y‖F

≥ ε do
Update Coefficient Matrix A:

Â = arg.min
A
‖Y− D̂A‖2F + ρ‖A‖1 (5.11)

Update Dictionary D:

D̂ = arg.min
D:‖Di‖=1

‖Y−DA‖2F (5.12)

Form Estimate of Data Ŷ:
Ŷ = D̂Â

end while
return D̂

problem,

D̂ = arg.min
D:‖Di‖=1,A

‖Y−DA‖2F + ρ‖A‖1,

Algorithm 5 operates by alternating between updating the sparse coefficients (5.11)

via FISTA (Beck and Teboulle, 2009) and dictionary (5.12) via the Newton method

(Nocedal and Wright, 2006).

For case 2), the columns of the dictionary are set as the known data voxels of the

target class. Specifically, instead of learning a dictionary based on a target class of

interest, we set it as the exact signatures observed previously. Note that for this case,

the dictionary is not normalized at this stage since the specific normalization depends

on the particular demixing problem of interest, discussed shortly. In practice, we can

store the un-normalized dictionary D (formed from the voxels), consisting of actual

signatures of the target material, and can normalize it after the HS image has been

acquired.

177

5.6.3 Experimental Setup

Normalization of data and the dictionary: For normalizing the data, we divide each

element of the data matrix M by ‖M‖∞ to preserve the inter-voxel scaling. For the

dictionary, in the learned dictionary case, i.e., case 1), the dictionary already has unit-

norm columns as a result of Algorithm 5. Further, when the dictionary is formed from

the data directly, i.e., for case 2), we divide each element of D by ‖M‖∞, and then

normalize the columns of D, such that they are unit-norm.

Dictionary selection for the Indian Pines Dataset: For the learned dictionary case,

we evaluate the performance of the aforementioned techniques for both entry-wise

and column-wise settings for two dictionary sizes, d = 4 and d = 10, for three values

of the regularization parameter ρ, used for the initial dictionary learning step, i.e.,

ρ = 0.01, 0.1 and 0.5. Here, the parameter ρ controls the sparsity during the initial

dictionary learning step; see Algorithm 5. For the case when dictionary is selected

from the voxels directly, we randomly select 15 voxels from the target class-16 to form

our dictionary.

Dictionary selection for the Pavia University Dataset: Here, for the learned dictio-

nary case, we evaluate the performance of the aforementioned techniques for both

entry-wise and column-wise settings for a dictionary of size d = 30 for three values

of the regularization parameter ρ, used for the initial dictionary learning step, i.e.,

ρ = 0.01, 0.1 and 0.5. Further, we randomly select 60 voxels from the target class-5,

when the dictionary is formed from the data voxels.

Comparison with matched filtering (MF)-based approaches: In addition to the ro-

bust PCA-based and OP-based techniques introduced in Section 5.2.4, we also com-

pare the performance of our techniques with two MF-based approaches. These MF-

based techniques are agnostic to our model assumptions, i.e., entry-wise or column-

wise sparsity cases. Therefore, the following description of these techniques applies to

both sparsity cases.

For the first MF-based technique, referred to as MF, we form the inner-product

of the column-normalized data matrix M, denoted as Mn, with the dictionary D, i.e.,

D>Mn, and select the maximum absolute inner-product per column. For the second

MF-based technique, MF†, we perform matched filtering on the pseudo-inversed data

M̃ = D†M. Here, the matched filtering corresponds to finding maximum absolute entry

178

for each column of the column-normalized M̃. Next, in both cases we scan through

1000 threshold values between (0,1] to generate the results.

Performance Metrics: We evaluate the performance of these techniques via the re-

ceiver operating characteristic (ROC) plots. ROC plots are a staple for analysis of clas-

sification performance of a binary classifier in machine learning; see James et al. (2013)

for details. Specifically, it is a plot between the true positive rate (TPR) and the false

positive rate (FPR), where a higher TPR (close to 1) and a lower FPR (close to 0) in-

dicate that the classifiier performs detects all the elements in the class while rejecting

those outside the class.

A natural metric to gauge good performance is the area under the curve (AUC)

metric. It indicates the area under the ROC curve, which is maximized when TPR

= 1 and FPR = 0, therefore, a higher AUC is preferred. Here, an AUC of 0.5 indicates

that the performance of the classifier is roughly as good as a coin flip. As a result, if a

classifier has an AUC < 0.5, one can improve the performance by simply inverting the

result of the classifier. This effectively means that AUC is evaluated after “flipping”

the ROC curve. In other words, this means that the classifier is good at rejecting the

class of interest, and taking the complement of the classifier decision can be used to

identify the class of interest.

In our experiments, MF-based techniques often exhibit this phenomenon. Specif-

ically, when the dictionary contains element(s) which resemble the average behavior

of the spectral signatures, the inner-product between the normalized data columns

and these dictionary elements may be higher as compared to other distinguishing dic-

tionary elements. Since, MF-based techniques rely on the maximum inner-product

between the normalized data columns and the dictionary, and further since the spec-

tral signatures of even distinct classes are highly correlated; see, for instance Fig. 5.2,

where MF-based approaches in these cases can effectively reject the class of interest.

This leads to an AUC < 0.5. Therefore, as discussed above, we invert the result of

the classifier (indicated as (·)∗ in the tables) to report the best performance. If using

MF-based techniques, this issue can potentially be resolved in practice by removing

the dictionary elements which tend to resemble the average behavior of the spectral

signatures.

179
Table 5.1: Entry-wise sparsity model for the Indian Pines Dataset. Simulation results are pre-
sented for our proposed approach (D-RPCA(E)), robust-PCA based approach on transformed
data D†M (RPCA†), matched filtering (MF) on original data M, and matched filtering on trans-
formed data D†M (MF†), across dictionary elements d, and the regularization parameter for
initial dictionary learning procedure ρ; see Algorithm 5 . Threshold selects columns with
column-norm greater than threshold such that AUC is maximized. For each case, the best per-
forming metrics are reported in bold for readability. Further, “ ∗ ” denotes the case where ROC
curve was “flipped” (i.e. classifier output was inverted to achieve the best performance).

(a) Learned dictionary, d = 4

d ρ Method Threshold

Performance
at best

operating
point

AUC

TPR FPR

4

0.01

D-RPCA(E) 0.300 0.979 0.023 0.989
RPCA† 0.650 0.957 0.049 0.974

MF∗ N/A 0.957 0.036 0.994
MF†∗ N/A 0.914 0.104 0.946

0.1

D-RPCA(E) 0.800 0.989 0.017 0.997
RPCA† 0.800 0.989 0.014 0.997

MF N/A 0.989 0.016 0.998
MF† N/A 0.989 0.010 0.998

0.5

D-RPCA(E) 0.600 0.968 0.031 0.991
RPCA† 0.600 0.935 0.067 0.988

MF N/A 0.548 0.474 0.555
MF†∗ N/A 0.849 0.119 0.939

(b) Learned dictionary, d = 10

d ρ Method Threshold

Performance
at best

operating
point

AUC

TPR FPR

10

0.01

D-RPCA(E) 0.600 0.935 0.060 0.972
RPCA† 0.700 0.978 0.023 0.990

MF∗ N/A 0.624 0.415 0.681
MF†∗ N/A 0.569 0.421 0.619

0.1

D-RPCA(E) 0.500 0.968 0.029 0.993
RPCA† 0.500 0.871 0.144 0.961

MF∗ N/A 0.688 0.302 0.713
MF† N/A 0.527 0.469 0.523

0.5

D-RPCA(E) 1.000 0.978 0.031 0.996
RPCA† 2.200 0.849 0.113 0.908

MF N/A 0.807 0.309 0.781
MF†∗ N/A 0.527 0.465 0.539

(c) Dictionary by sampling voxels, d = 15

d Method Threshold

Performance
at best

operating
point

AUC

TPR FPR

15

D-RPCA(E) 0.300 0.989 0.021 0.998
RPCA† 3.000 0.849 0.146 0.900

MF N/A 0.957 0.085 0.978
MF† N/A 0.796 0.217 0.857

(d) Average performance

Method
TPR FPR AUC

Mean St.Dev. Mean St.Dev. Mean St.Dev.
D-RPCA(E) 0.972 0.019 0.030 0.014 0.991 0.009

RPCA† 0.919 0.061 0.079 0.055 0.959 0.040
MF 0.796 0.179 0.234 0.187 0.814 0.178
MF† 0.739 0.195 0.258 0.192 0.775 0.207

5.6.4 Parameter Setup for the Algorithms

Entry-wise sparsity case: We evaluate and compare the performance of the proposed

method D-RPCA(E) with RPCA† (described in Section 5.2.3), MF, and MF†. Specifi-

cally, we evaluate the performance of these techniques via the receiver operating char-

acteristic (ROC) plot for the Indian Pines dataset and the Pavia University dataset, with

the results shown in Table 5.1(a)-(d) and Table 5.2(a)-(c), respectively.

For the proposed technique, we employ the accelerated proximal gradient (APG)

180
Table 5.2: Entry-wise sparsity model and Pavia University Dataset. Simulation results are pre-
sented for the proposed approach (D-RPCA(E)), robust-PCA based approach on transformed
data (RPCA†), matched filtering (MF) on original data M, and matched filtering on transformed
data D†M (MF†), across dictionary elements d, and the regularization parameter for initial dic-
tionary learning step ρ. Threshold selects columns with column-norm greater than threshold
such that AUC is maximized. For each case, the best performing metrics are reported in bold
for readability. Further, “ ∗ ” denotes the case where ROC curve was “flipped” (i.e. classifier
output was inverted to achieve the best performance).

(a) Learned dictionary, d = 30

d ρ Method Threshold

Performance
at best

operating
point

AUC

TPR FPR

30

0.01

D-RPCA(E) 0.150 0.989 0.015 0.992
RPCA† 0.700 0.849 0.146 0.925

MF N/A 0.929 0.073 0.962
MF† N/A 0.502 0.498 0.498

0.1

D-RPCA(E) 0.050 0.982 0.019 0.992
RPCA† 3.000 0.638 0.374 0.664

MF N/A 0.979 0.053 0.986
MF† N/A 0.620 0.381 0.660

0.5

D-RPCA(E) 0.080 0.982 0.019 0.992
RPCA† 2.500 0.635 0.381 0.671

MF N/A 0.980 0.159 0.993
MF†∗ N/A 0.555 0.447 0.442

(b) Dictionary by sampling voxels, d = 60

d Method Threshold

Performance
at best

operating
point

AUC

TPR FPR

60

D-RPCA(E) 0.060 0.986 0.016 0.995
RPCA† 1.000 0.799 0.279 0.793

MF N/A 0.980 0.011 0.994
MF† N/A 0.644 0.355 0.700

(c) Average performance

Method
TPR FPR AUC

Mean St.Dev. Mean St.Dev. Mean St.Dev.
D-RPCA(E) 0.984 0.003 0.014 0.002 0.993 0.001

RPCA† 0.730 0.110 0.295 0.110 0.763 0.123
MF 0.967 0.025 0.074 0.062 0.983 0.0149
MF† 0.580 0.064 0.420 0.065 0.575 0.125

algorithm shown in Algorithm 4 and discussed in Section 5.5 to solve the optimization

problem shown in D-RPCA(E). Similarly, for RPCA† we employ the APG algorithm

with transformed data matrix M̃, while setting D = I.

With reference to selection of tuning parameters for the APG solver for (D-RPCA(E))

(RPCA†, respectively), we choose v = 0.95, ν = ‖M‖ (ν = ‖M̃‖), ν̄ = 10−4, and scan

through 100 values of λe in the range λe ∈ (0,‖D>M‖∞/‖M‖] (λe ∈ (0,‖M̃‖∞/‖M̃‖]), to

generate the ROCs. We threshold the resulting estimate of the sparse part S ∈ Rd×nm

based on its column norm. We choose the threshold such that the AUC metric is maxi-

mized for both cases (D-RPCA(E) and RPCA†).

Column-wise sparsity case: For this case, we evaluate and compare the performance

of the proposed method D-RPCA(C) with OP† (as described in Section 5.2.3), MF, and

MF†. The results for the Indian Pines dataset and the Pavia University dataset as shown

in Table 5.3(a)-(d) and Table 5.4(a)-(c), respectively.

As in the entry-wise sparsity case, we employ the accelerated proximal gradient

(APG) algorithm presented in Algorithm 4 to solve the optimization problem shown

181
Table 5.3: Column-wise sparsity model and Indian Pines Dataset. Simulation results are pre-
sented for the proposed approach (D-RPCA(C)), Outlier Pursuit (OP) based approach on trans-
formed data (OP†), matched filtering (MF) on original data M, and matched filtering on trans-
formed data D†M (MF†), across dictionary elements d, and the regularization parameter for
initial dictionary learning step ρ. Threshold selects columns with column-norm greater than
threshold such that AUC is maximized. For each case, the best performing metrics are re-
ported in bold for readability. Further, “ ∗ ” denotes the case where ROC curve was “flipped”
(i.e. classifier output was inverted to achieve the best performance).

(a) Learned dictionary, d = 4

d ρ Method Threshold

Performance
at best

operating
point

AUC

TPR FPR

4

0.01

D-RPCA(C) 0.905 0.989 0.014 0.998
OP† 0.895 0.989 0.015 0.998
MF∗ N/A 0.656 0.376 0.611
MF†∗ N/A 0.624 0.373 0.639

0.1

D-RPCA(C) 0.805 0.989 0.013 0.998
OP†∗ 1.100 0.720 0.349 0.682
MF∗ N/A 0.742 0.256 0.780
MF† N/A 0.828 0.173 0.905

0.5

D-RPCA(C) 1.800 0.989 0.010 0.998
OP† 1.300 0.989 0.012 0.998
MF N/A 0.548 0.474 0.556
MF†∗ N/A 0.849 0.146 0.939

(b) Learned dictionary, d = 10

d ρ Method Threshold

Performance
at best

operating
point

AUC

TPR FPR

10

0.01

D-RPCA(C) 0.800 0.946 0.016 0.993
OP† 1.300 0.946 0.060 0.988
MF∗ N/A 0.946 0.060 0.987
MF†∗ N/A 0.527 0.468 0.511

0.1

D-RPCA(C) 0.550 0.979 0.029 0.997
OP† 0.800 0.893 0.112 0.928
MF∗ N/A 0.688 0.302 0.714
MF† N/A 0.527 0.470 0.523

0.5

D-RPCA(C) 1.400 0.989 0.037 0.997
OP† 0.800 0.807 0.148 0.847
MF N/A 0.807 0.309 0.781
MF†∗ N/A 0.527 0.468 0.539

(c) Dictionary by sampling voxels, d = 15

d Method Threshold

Performance
at best

operating
point

AUC

TPR FPR

15

D-RPCA(C) 0.800 0.989 0.018 0.998
OP† 2.200 0.882 0.126 0.900
MF N/A 0.957 0.085 0.978
MF† N/A 0.796 0.217 0.857

(d) Average performance

Method
TPR FPR AUC

Mean St.Dev. Mean St.Dev. Mean St.Dev.
D-RPCA(C) 0.981 0.016 0.020 0.010 0.997 0.002

OP† 0.889 0.099 0.117 0.115 0.906 0.114
MF 0.763 0.151 0.266 0.149 0.772 0.166
MF† 0.668 0.151 0.331 0.148 0.702 0.192

in D-RPCA(C). Similarly, for OP† we employ the APG with transformed data matrix

M̃, while setting D = I. For the tuning parameters for the APG solver for (D-RPCA(C))

(OP†, respectively), we choose v = 0.95, ν = ‖M‖ (ν = ‖M̃‖), ν̄ = 10−4, and scan through

100 λcs in the range λc ∈ (0,‖D>M‖∞,2/‖M‖] (λc ∈ (0,‖M̃‖∞,2/‖M̃‖]), to generate the

ROCs. As in the previous case, we threshold the resulting estimate of the sparse part

S ∈Rd×nm based on its column norm.

182
Table 5.4: Column-wise sparsity model and Pavia University Dataset. Simulation results for
the proposed approach (D-RPCA(C)), Outlier Pursuit (OP) based approach (OP†), matched fil-
tering (MF) on original data M, and matched filtering on transformed data D†M (MF†), across
dictionary elements d, and the regularization parameter for initial dictionary learning step ρ.
Threshold selects columns with column-norm greater than threshold such that AUC is maxi-
mized. For each case, the best performing metrics are reported in bold for readability. Further,
“ ∗ ” denotes the case where ROC curve was “flipped” (i.e. classifier output was inverted to
achieve the best performance).

(a) Learned dictionary, d = 30

d ρ Method Threshold

Performance
at best

operating
point

AUC

TPR FPR

30

0.01

D-RPCA(C) 0.065 0.990 0.015 0.991
OP† 0.800 0.7581 0.3473 0.705
MF N/A 0.929 0.073 0.962
MF† N/A 0.502 0.50 0.498

0.1

D-RPCA(C) 0.070 0.996 0.022 0.994
OP† 0.100 0.989 0.3312 0.904
MF N/A 0.979 0.053 0.986
MF† N/A 0.62 0.3814 0.66

0.5

D-RPCA(C) 0.035 0.983 0.017 0.995
OP† 0.200 0.940 0.264 0.887
MF N/A 0.980 0.160 0.993
MF†∗ N/A 0.555 0.447 0.442

(b) Dictionary by sampling voxels, d = 60

d Method Threshold

Performance
at best

operating
point

AUC

TPR FPR

60

D-RPCA(C) 0.020 0.993 0.022 0.994
OP† 0.250 0.963 0.264 0.907
MF N/A 0.980 0.011 0.994
MF† N/A 0.644 0.355 0.700

(c) Average performance

Method
TPR FPR AUC

Mean St.Dev. Mean St.Dev. Mean St.Dev.
D-RPCA(C) 0.990 0.006 0.015 0.003 0.993 0.002

OP† 0.912 0.105 0.302 0.044 0.850 0.098
MF 0.97 0.025 0.074 0.063 0.984 0.015
MF† 0.580 0.064 0.4208 0.065 0.575 0.124

5.6.5 Analysis

Table 5.1–5.2 and Table 5.3–5.4 show the ROC characteristics and the classification

performance of the proposed techniques D-RPCA(E) and D-RPCA(C), for two datasets

under consideration, respectively, under various choices of the dictionary D and reg-

ularization parameter ρ for Algorithm 5. We note that both proposed techniques D-

RPCA(E) and D-RPCA(C) on an average outperform competing techniques, emerging

as the most reliable techniques across different dictionary choices for the demixing

task at hand; see Tables 5.1(d), 5.2(c), 5.3(d), and 5.4(c).

Further, the performance of D-RPCA(C) is slightly better than D-RPCA(E). This

can be attributed to the fact that the column-wise sparsity model does not require the

columns of S to be sparse themselves. As alluded to in Section 5.2.2, this allows for

higher flexibility in the choice of the dictionary elements for the thin dictionary case.

In addition, we see that the matched filtering-based techniques (and even OP†

based technique for d = 4 and ρ = 0.1 in Table 5.3) exhibit “flip” or inversion of the

183

Data L DS

20 40 60 80 100 120 140

20

40

60

80

100

120

140

B
es

t
λ
e

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(a) (c) (d)

20 40 60 80 100 120 140

20

40

60

80

100

120

140

85
%

of
λ

m
ax

e

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(b) (e) (f)

Figure 5.2: Recovery of the low-rank component L and the dictionary sparse component DS
for different values of λ for the proposed technique at f = 50-th channel of the (Baumgardner
et al., 2015) (shown in panel (a)) corresponding to the results shown in Table 5.1(c). Panel
(b) corresponds to the ground truth for class-16. Panel (c) and (d) show the recovery of the
low-rank part and dictionary sparse part for a λ at the best operating point. While, panels (e)
and (f) show the recovery of these components at λe = 85% of λmax

e . Here, λmax
e denotes the

maximum value λe can take; see Section 5.5.3.

ROC curve. As described in Section 5.6.3, this phenomenon is an indicator that a clas-

sifier is better at rejecting the target class. In case of MF-based technique, this is a

result of a dictionary that contains an element that resembles the average behavior of

the spectral responses. A similar phenomenon is at play in case of the OP† for d = 4 and

ρ = 0.1 in Table 5.3. Specifically, here the inversion indicates that the dictionary is ca-

pable of representing the columns of the data M effectively, which leads to an increase

in the corresponding column norms in their representation M̂. Coupled with the fact

that the component L is no longer low-rank for this thin dictionary case (see our dis-

cussion in Section 5.2.4), this results in rejection of the target class. On the other hand,

our techniques D-RPCA(E) and D-RPCA(C) do not suffer from this issue. Moreover,

note that across all the experiments, the thresholds for RPCA† and OP† are higher than

their D-RPCA counterparts. This can also be attributed to the pre-multiplication by

the pseudo-inverse of the dictionary D†, which increases column norms based on the

184

leading singular values of D. Therefore, using D-RPCA(E), when the target spectral

response admits a sparse representation, and D-RPCA(C), otherwise, yield consistent

and superior results as compared to related techniques considered in this work.

There are other interesting recovery results which warrant our attention. Fig. 5.2

shows the low-rank and the dictionary sparse component recovered by D-RPCA(E)

for two different values of λe, for the case where we form the dictionary by randomly

sampling the voxels (Table 5.1(c)) for the Indian Pines Dataset (Baumgardner et al.,

2015). Interestingly, we recover the rail tracks/roads running diagonally on the top-

right corner, along with some low-density housing; see Fig 5.2 (f). This is because the

signatures we seek (stone-steel towers) are similar to the signatures of the materials

used in these structures. This further corroborates the applicability of the proposed

approach in detecting the presence of a particular spectral signature in a HS image.

However, this also highlights potential drawback of this technique. As D-RPCA(E) and

D-RPCA(C) are based on identifying materials with similar composition, it may not be

effective in distinguishing between very closely related classes, say two agricultural

crops, also indicated by our theoretical results.

5.7 Conclusions

We present a generalized robust PCA-based technique to localize a target in a HS im-

age, based on the a priori known spectral signature of the material we wish to localize.

We model the data as being composed of a low-rank component and a dictionary-

sparse component, and consider two different sparsity patterns corresponding to dif-

ferent structural assumptions on the data, where the dictionary contains the a priori

known spectral signatures of the target. We adapt the theoretical results of Chapter 4,

to present the conditions under which such decompositions recover the two compo-

nents for the HS demixing task. Further, we evaluate and compare the performance of

the proposed method via experimental evaluations for a classification task for different

choices of the dictionary on real HS image datasets, and demostrate the applicability

of the proposed techniques for a target localization in HS images.

Part III

Application-Focused Techniques

185

Chapter 6

Lidar-Based Topological Mapping

and Localization via Tensor

Decompositions

6.1 Overview

We propose a technique to develop (and localize in) topological maps from light de-

tection and ranging (Lidar) data. Localizing an autonomous vehicle with respect to a

reference map in real-time is crucial for its safe operation. Owing to the rich informa-

tion provided by Lidar sensors, these are emerging as a promising choice for this task.

However, since a Lidar outputs a large amount of data every fraction of a second, it

is progressively harder to process the information in real-time. Consequently, current

systems have migrated towards faster alternatives at the expense of accuracy. To over-

come this inherent trade-off between latency and accuracy, we propose a technique

to develop topological maps from Lidar data using the orthogonal Tucker3 tensor de-

composition. Our experimental evaluations demonstrate that in addition to achieving

a high compression ratio as compared to full data, the proposed technique, TensorMap,

also accurately detects the position of the vehicle in a graph-based representation of

a map. We also analyze the robustness of the proposed technique to Gaussian and

translational noise, thus initiating explorations into potential applications of tensor

decompositions in Lidar data analysis.

186

187

(a) (b)
Figure 6.1: The Ford Dataset (Pandey et al., 2011). Panels (a) and (b) show the trajectory traced
by the vehicle, and nodes of a representative topological map (in red), respectively.

6.2 Introduction

Autonomous vehicles are gaining significant traction due to the advent of smaller foot-

print, yet fast processors. One of the major steps in autonomous vehicle navigation is to

keep track of the state of the vehicle which, among other things, includes the position

of the vehicle with respect to the global frame of reference. For this, vehicles often em-

ploy a wide range of sensors like GPS, cameras and inertial measurement units (IMU).

However, these sensors usually do not provide the accuracies required to establish safe

(and stable) operation.

The advances in Lidar technology coupled with its increasing affordability have

made it the most popular sensor for tracking position with millimeter accuracies.

However, the Lidar technology comes with its own set of drawbacks. Each scan (the

range measurements received by the sensors at different angles of azimuth and eleva-

tion) obtained by the Lidar sensor is a point cloud containing millions of data points.

Although this data provides very accurate details about the operating environment,

the sheer volume of the data thrown at the processor every fraction of a second, often

forces us to choose between speed of operation (latency) and accuracy.

One way of addressing this issue is to develop efficient representations of the map.

To develop these representations, often a map as the one shown in Fig. 6.1 (a), can be

viewed as a graph with nodes as turns/landmarks, with roads as the edges or segments

of the graph. Such a map is known as a topological map; Fig. 6.1 (b) shows an example

of the nodes in such a map. The problem of localization then becomes a problem of

identifying which segment the vehicle is on, and how far along in the segment it is

positioned.

188

6.2.1 Prior-Art

Building topological maps for localization using imaging-based techniques has gained

traction in recent times since these are inexpensive to implement and faster to process

(Siagian and Itti, 2009; Wang et al., 2006; Fraundorfer et al., 2007; Booij et al., 2007;

Chang et al., 2010; Milford and Wyeth, 2012; Schindler et al., 2007; Angeli et al., 2009),

as compared to Lidar sensors. However, these vision-based techniques are sensitive to

changing weather and illumination (day and night).

The process of identifying the rigid body transformation that aligns a scan with a

map is known as scan matching, and is a very effective choice for localization. Signifi-

cant advances have been made in the area of developing better and accurate represen-

tations for scan-matching using Lidar data (Besl and McKay, 1992; Biber and Straßer,

2003; Morris et al., 2005; Myronenko and Song, 2010; Mueller et al., 2011), but the

time, and computational overhead, associated with it are still prohibitive. The state-

of-the-art techniques deal with the computational overhead by acquiring Lidar data at

lower rate in order to operate in real-time (Zhang and Singh, 2014, 2015).

On the other hand, low rank tensor models, specifically Tucker3 (Tucker and Led-

yard, 1966) decomposition, popularized by the higher-order singular value decom-

position (HO-SVD) technique(Lathauwer et al., 2000), have gained success in a wide

variety of applications; see Kolda and Bader (2009); Sidiropoulos et al. (2017) and the

references therein for details. Viewed as a generalization of SVD, here the tensor is fac-

torized as core tensor multiplied by factor matrices in each dimension (mode); the size

of the matrices controlling the respective mode ranks (collectively, the so-called multi-

linear rank of the tensor). In addition to compressing approximately low multi-linear

rank tensors, this decomposition exhibits an interesting property – the core tensor is

all orthogonal, i.e., each slice of this tensor is orthogonal to all the other slices; see

Lathauwer et al. (2000) for details.

It is worth noting that recently, Li et al. (2017) employed tensor models to classify

objects in a Lidar scan based on dictionary learning. As opposed to this work, our aim

here is to localize a vehicle on a map using the Lidar scans.

6.2.2 Summary of Our Technique

In this work, we present a tensor decompositions-based technique for building topo-

logical maps using Lidar data. To this end, we first represent the 3D-point cloud Lidar

189

(a) 3-D Point Cloud
(a Lidar Scan),

(b) Matricized
scan,

(c) Learn Tucker3 models for each
length-k segment tensors,

(d) TensorMap.

Figure 6.2: Learning the topological map. We represent each 3-D point cloud corresponding
to each Lidar scan (a), as a matrix (b) after conversion to polar coordinates. We aggregate
the matricized scans to form length-k segment tensors X`, and learn the orthogonal Tucker3
models on each of these (shown in panels (c) and (d)).

scans as a 3-way tensor. Next, we learn orthogonal Tucker3 models on partitions of this

tensor by exploiting the approximate low multi-linear rank structure, arising from the

fact that scans in a local neighborhood – specifically straight paths – are similar; see

Fig. 6.2. Further, we develop a technique to localize in this map by leveraging the “all-

orthogonal” property of the aforementioned tensor decomposition; see Fig. 6.3. To the

best of our knowledge, this is the first application to exploit the orthogonality of the

core tensor slices.

6.2.3 Our Contributions

We make the following contributions: 1) we develop TensorMap1: a technique to build

Lidar-based topological maps using tensor decompositions and perform localization in

them, 2) we analyze the efficiency of the proposed representation in terms of its space

complexity in comparison to using the full Lidar data, 3) we show the performance

of TensorMap for a localization task on real Lidar data, and 4) we demonstrate the

robustness properties of the proposed technique to different types of simulated noise

(Gaussian and translational).

The rest of the chapter is organized as follows. We formulate the problem and

describe TensorMap in Section 6.3. In Section 6.4, we discuss parameter selection,

simulations results, and other applications, and provide a few concluding remarks in

Section 6.5.
1Details about the implementation can be found at https://github.com/srambhatla/TensorMap; see

Chapter 7 for details.

https://github.com/srambhatla/TensorMap

190

The “signature”

Figure 6.3: Localizing based on a scan. Each test scan, after matricization (as described in Sec-
tion 6.3.3), is processed by each U` and V` to form “signatures” G̃`, which are then compared
(in Frobenius norm sense) to the core tensors G` of TensorMap for best match.

6.3 Problem formulation

We illustrate TensorMap using the Ford campus vision and Lidar dataset Pandey et al.

(2011), henceforth referred to as “the Ford Dataset.” The Ford Dataset contains a set

of 3800 Lidar scans corresponding to a loop in downtown Dearborn, Michigan. The

trajectory of the scans collected by the Ford Dataset is shown in Fig. 6.1(a). The data is

collected using a Velodyne 3D-Lidar scanner which has a vertical field of view (FOV)

of 26.3◦ (apx. from −25◦ to 4◦) and a lateral FOV of 360◦ (from [−180◦,180◦]), with the

Lidar spinning at 10 Hz.

6.3.1 Modeling Lidar data as a Tensor

Each scan in the dataset is a list of about 77,000 returns or a point cloud represented in

3D Cartesian coordinates i.e. (x,y,z) corresponding to the position of objects reflecting

the incident laser, as shown in Fig. 6.2 (a). Here, the number of returns per scan de-

pends on the scene. To represent Lidar scans as a tensor, we first convert the the data

to polar coordinates, which results in a list of returns expressed as (ρ,θ,φ), where ρ is

the range, θ is the elevation and φ is the azimuth. Next, we form a matrix with rows

corresponding to elevation angles θ, and columns corresponding to azimuth angles φ,

by rounding these to whole angles (this discretization is a design choice). Then, for

each entry in the list of returns in polar coordinates, we place the range values (ρ) at

the rounded-off (θ,φ) location, as shown in Fig. 6.2 (b). Due to this quantization (of

the θ and φ), multiple returns may get mapped to a single entry of the matrix. For the

given sensor, θ is restricted between [−25◦,4◦] andφ between [−180◦,180◦]. Therefore,

each scan is transformed to a 30× 361 matrix, and collecting all the scans, results in a

191

Seg. Len. = 50 Seg. Len. = 100 Seg. Len. = 200 Seg. Len. = 475 Seg. Len. = 760

5 10 15 20 25

Rank in first dimension, r
1

92

94

96

98

100

A
cc

ur
ac

y
(%

)

5 10 15 20 25

Rank in first dimension, r
1

92

94

96

98

100

A
cc

ur
ac

y
(%

)

5 10 15 20 25

Rank in first dimension, r
1

92

94

96

98

100

A
cc

ur
ac

y
(%

)

5 10 15 20 25

Rank in first dimension, r
1

92

94

96

98

100

A
cc

ur
ac

y
(%

)

(a) r2 = 5 (b) r2 = 10 (c) r2 = 15 (d) r2 = 25

5 10 15 20 25

Rank in second dimension, r
2

92

94

96

98

100

A
cc

ur
ac

y
(%

)

5 10 15 20 25

Rank in second dimension, r
2

92

94

96

98

100

A
cc

ur
ac

y
(%

)
5 10 15 20 25

Rank in second dimension, r
2

92

94

96

98

100

A
cc

ur
ac

y
(%

)

5 10 15 20 25

Rank in second dimension, r
2

92

94

96

98

100

A
cc

ur
ac

y
(%

)

(e) r1 = 5 (f) r1 = 10 (g) r1 = 15 (h) r1 = 25

(i) Seg. Len.
k = 50

(j) Seg. Len.
k = 100

(k) Seg. Len.
k = 200

(l) Seg. Len.
k = 475

(m) Seg. Len.
k = 760

Figure 6.1: Effect of choice of {r1, r2, k} on the performance accuracy. Panels (a-d) show
the effect of choice of segment lengths k and varying r1 for fixed r2 = 5,10,15, and 25,
respectively. Similarly, panels (e-h) show the effect of choice of segment lengths kand
r2 for fixed r1 = 5,10,15, and 25, respectively. Here, segment lengths k considered are
50,100,200,475, and 760. Panels (i)-(m) show the nodes for each segment corresponding to
choice of k (in red), with the start/end point of the path denoted in green.

tensor X. Therefore, for the Ford data set X ∈ 30× 361× 3800.

6.3.2 Building TensorMap

For learning the topological map, we use the orthogonal Tucker decomposition to ex-

ploit the low mode-rank (in two of the three modes) structure of the tensor. Lidar data

is particularly amenable to this model because the scene at each step is highly corre-

lated to the previous one. To leverage this relationship, let X denote a tensor in R
I×J×K

containing all scans corresponding to a map. Next, let X` ∈ R
I×J×k denote length-k

disjoint partitions of X for each ` = {1,2, . . . ,L} for L = K/k, where we assume that k di-

vides K perfectly; see Fig. 6.2(c). As a result, we have short tensors X` for each length-k

segment along the path whose orthogonal Tucker3 decomposition can be written as

vec(X`) = (U` ⊗V` ⊗W`)ḡ`.

Here, “⊗” denotes kronecker product, U` ∈ RI×r1 , V` ∈ RJ×r2 and W` ∈ Rk×k denote the

factors where r1 ≤ I and r2 ≤ J, and ḡ` denotes the vectorized core tensor G` shown in

192

Fig. 6.2(c). Note that, to preserve the position information we do not compress along

the third dimension of the segment tensor X`, i.e., we set W` = I, where I denotes

an k × k identity matrix. The core tensor G` ∈ Rr1×r2×k along with factors U` and V`

corresponding to each segment form the TensorMap, as shown in Fig. 6.2(d).

6.3.3 Localizing in TensorMap

Since each r1 × r2 slice of the core tensor G` ∈Rr1×r2×k (corresponding to the scans in a

segment) is orthogonal to the other slices, each slice of the core tensor can be viewed as

a “signature” of the associated scan. As shown in Fig. 6.3, we exploit this property for

localization. Specifically, to localize any test scan (point cloud), we first convert it into a

matrix Stest as described in Section 6.3.1. Next, we form “signature” G̃` corresponding

to Stest as

G̃` = U>` StestV`,

for all ` ∈ {1,2, . . . ,L}. Then, we find the closest matching core tensor slice G` (in Frobe-

nius norm sense) across all segments. This process identifies the scan that is a closest

match to the test scan, hence also identifies the segment.

6.3.4 Memory Considerations

We consider the space complexity of TensorMap for its implementation on real-world

systems and embedded platforms. We propose to learn a orthogonal Tucker3 model

for each length-k segment, and there are L such models to be learnt. Therefore, the

total number of memory units required to store TensorMap are,

L(Ir1 + Jr2) + Kr1r2.

This storage requirement is significantly smaller than the original tensor, i.e. IJK, for

small values of r1, r2 and L. Note that we do not store W` since in each case it is an

identity matrix.

Interestingly, the expression above supports longer segments which still yield a

lower error for smaller r1 and r2. In the context of maps, this means that scans of

a segment should be accumulated as long as they are similar to each other. There-

fore, suitable segment length is closely related to the number of straight line paths

in the map. Note that, although we consider a fixed segment length for the current

193

100 200 300 400 500 600 700

Test scan set

1

2

3

4

5

D
et

ec
te

d
se

gm
en

t

TensorMap (this work)
Actual Segment

100 200 300 400 500 600 700

Test scan set

1000

2000

3000

D
et

ec
te

d
S

ca
n

S
eq

.

TensorMap (this work)
Actual Scan Seq.

1 2 3 4 5

Predicted

1

2

3

4

5

A
ct

ua
l S

eg
m

en
t

0

50

100

150

(a) (d) (g)

100 200 300 400 500 600 700

Test scan set

-0.5

0

0.5

1

M
ot

io
n

Motion Surrogate Thresholded Motion Surrogate Misclassification

100 200 300 400 500 600 700

Test scan set

-200
0

200
400
600

 A
bs

. E
rr

or

Thresholded Motion Surrogate Misclassified Scans

(b) (e) (h)

1 2 3 4 5

Segments

0

10

20

T
ra

in
 E

rr
or

 (
%

)

1 2 3 4 5

Segments

0

10

20

T
ra

in
 E

rr
or

 (
%

)

(c) (f)

Figure 6.1: Performance of TensorMap on the Ford Dataset with {r1, r2, k} chosen as {5,5,760},
respectively. Panel (a) shows the classification of test scans into segments. The corresponding
surrogate for velocity (blue), the decision of vehicle movement (green), and the errors made
by TensorMap (red) are shown in panel (b). Notice how majority of the errors occur when
the vehicle is stationary. Panels (c) and (f) show the relative error between the original segment
tensor and the model learnt by TensorMap. Panel (d) shows the scan classification performance
of the technique, actual test set (blue) the closest (Frobenius norm) train set scan found by
TensorMap. The corresponding decision of vehicle movement (green) and the errors made (red)
are shown in (e). Panel (g) shows the confusion matrix corresponding to the classification of
test scans to segments shown in (a), and (h) shows the nodes of TensorMap (red) superimposed
on the actual map (blue).

exposition, there is no requirement that the segments be of equal length. We leave

exploration of these extensions to future work.

6.4 Numerical Evaluations

6.4.1 Experimental Set-up

We evaluate the performance of TensorMap based on its classification accuracy of as-

signing test scans to their respective segments, using a 80 : 20 - Train : Test split of

scans in each segment. To this end, we first learn orthogonal Tucker representations

(TensorMap) on the training data for each segment using the HO-SVD algorithm (Lath-

auwer et al., 2000; Kolda and Bader, 2009). We also analyze the within-segment clas-

sification performance by analyzing the train scan sequence which was found closest

to the test sequence.

194

6.4.2 Selecting the Parameters

There are a few design parameters that we need to choose, namely the length of the

segment k, and the number of columns r1 and r2 in factors U` and V`, respectively.

To find the best choice(s), we search over various values of r1, r2, and k, to arrive at

a {r1, r2, k} which yields highest accuracy, while being efficient in terms of the storage

requirements.

Fig. 6.1 shows accuracies over different choices of {r1, r2}, and segment lengths k.

We observe that for a specific choice of r1 and r2, the segment classification perfor-

mance is better for longer segments as compared to shorter ones. This is because scans

in shorter segments are very similar to those in neighboring segments; see Fig. 6.1

(i)-(m). Also, although longer segments choices sometimes perform better for larger

values of r1 and r2, we prefer smaller r1 and r2 to reduce the computational and mem-

ory overhead. Overall, by this analysis, we arrive at the choice of {5,5,760} for {r1, r2, k},
respectively.

6.4.3 Results

In Fig. 6.1, we present the results for {r1, r2, k} chosen as {5,5,760}, respectively. We

observe that our method identifies the test segments accurately, except for two scans;

see Fig. 6.1(a). To investigate these misclassifications, we turn to Fig. 6.1(b), which

shows the relationship of the errors with the motion surrogate, which is formed by

evaluating the norm of change in 6-DOF pose – provided by the Ford Dataset – of the

vehicle. We observe that the errors seem to arise only when the vehicle is stationary.

This is due to the fact that the scan acquisition process does not stop when the vehicle

is not moving. As a result, scenes in consecutive segments can be very similar to each

other. However, attributing scans to any one of the these segments does not adversely

effect the localization performance. Therefore, to account for this effect we report

errors on parts where the vehicle is moving, using the motion surrogate.

In panel Fig. 6.1(d) and (e), we show the actual train scan (scan sequence number)

found to be the closest to the test set and the misclassified scans, respectively. We note

that when the vehicle is in motion, TensorMap indeed performs very well. In prac-

tice, we can run TensorMap only when the vehicle is in motion, holding the currently

estimated value when the vehicle is stopped.

We also report the error between the original segment tensor and the orthogonal

195

0 0.2 0.4 0.6 0.8 1

Standard deviation ()

0

20

40

60

80

100

A
cc

ur
ac

y
 (

%
)

0 1 2 3 4 5

Translation (m)

60

70

80

90

100

A
cc

ur
ac

y
 (

%
)

(a) (b)

Figure 6.2: Effect of two types of noise on accuracy. (a) Effect of zero-mean Gaussian noise of
variance σ2, added to each point, and (b) effect of translations (in meters) to the right (simu-
lated).

Tucker3 model learnt in Fig. 6.1(c) and (f), replicated to improve readability. Further,

Fig. 6.1 panel (g) shows the corresponding confusion matrix for segment classification

problem shown in Fig. 6.1(a). Also, the topological map learnt is shown in panel (h).

Notice that the nodes of this topological map are not spaced uniformly, this is due to

the movement of the vehicle.

6.4.4 Effect of Gaussian noise and Translations

We now study the effect of Gaussian noise and translations on the performance of

TensorMap. Here, we generate the noisy tensor by adding zero-mean Gaussian random

noise of variance σ2 to each coordinate of the Lidar scan, and process these noisy Lidar

scans using the procedure described in Section 6.3.1.

Fig. 6.2 (a) shows the effect of adding zero-mean Gaussian random noise of vari-

ance σ2 to each coordinate of the returns (point cloud) on accuracy. We notice that

although the technique seems to be robust to lower levels of noise, the performance

degrades with increasing σ . This is because the “signatures” are heavily dependent

on the relative position of objects in the environment. This is somewhat reassuring,

it points to the fact that TensorMap is basing its decision on the relative placement of

features, leveraged at the classification stage.

Next we study the effect of a second, perhaps more challenging type of noise: trans-

lations. Fig. 6.2 (b) shows the effect of successively shifting the test sequence to the

196

right on the accuracy (%). We notice that the technique is successful up-to a trans-

lation of about 1m, beyond which, the performance quickly degrades. Note that a

similar effect can be observed for translations to the left. The translations we consider

here are artificially generated, in practice the effect of translation may be worse. This

is because, the Lidar “sees” additional objects in the direction of translation; posing a

potential challenge for our approach.

6.4.5 Compression Ratio

Finally, we analyze the compression ratio of the proposed technique in terms of num-

ber of elements to be stored. For the given choice of parameters we achieve the ratio

of TensorMap : Tensor representation : Lidar Scan representation of about 1 : 400 :

8300. This significant improvement in terms of memory requirement enables use of

TensorMap in real-world applications.

6.4.6 Other Applications and Future Work

Applications of TensorMap also include secure and efficient location communication

by transmission of the “signatures” (which in the current case are just 5 × 5 matri-

ces), these “signatures” can be viewed as encoded location information. These can

be directly understood by the sender and receiver(s), who have access to the a priori

known topological map. Further, as alluded to in Section 6.2, TensorMap can be used

for coarse localization before scan-matching thus reducing the associated computa-

tional and storage overhead, potentially making scan-matching viable for real-time

localization. Further, TensorMap can also be used to detect false loop-closures while

scan-matching.

Future work includes fusing data from other sensors to improve the robustness of

TensorMap in order to develop techniques for localization, and comparison of such a

technique with related works. Also, as alluded to in this discussion, using unequal seg-

ment lengths, instead of the fixed ones considered here, remains a potential direction.

6.5 Conclusions

Lidar scan-matching provides the most accurate information about the position of the

autonomous vehicle, yet it is computationally expensive, prohibiting its use in real-

time localization. Popular techniques reduce the rate of data acquisition to cope with

197

this overhead. In this work, we present a technique based on tensor decompositions for

building efficient (in terms of space complexity) graph representations of maps. Our

preliminary investigation of the proposed technique via experimental evaluations on

real-world Lidar data for a localization task shows promising results, and opens excit-

ing avenues for future explorations, in order to make autonomous vehicle navigation

safer and more stable.

Part IV

Tools

198

Chapter 7

Software Resources

7.1 Reproducible Research

In spirit of reproducible research, we fix the random seed for our experiments (when

applicable). In addition, we have released the code on GitHub for evaluation and future

explorations.

7.2 Software Packages Developed

We now provide a brief overview of the packages developed along with links to the

code repositories.

7.2.1 NOODL: Neurally plausible alternating Optimization-based Online

Dictionary Learning

The code corresponding to our dictionary learning algorithm, described in Chapter 2,

is made available at https://github.com/srambhatla/NOODL. The code-base is im-

plemented in MATLAB and Python.

The implementation covers both the vanilla and distributed versions of the algo-

rithm. In the distributed version, we employ MATLAB’s spmd to distribute the process-

ing of the data samples across workers. This is especially useful for processing large

datasets.

We also provide the code corresponding to our comparative experiments. This

can be used to reproduce the results shown in Chapter 2. For these, we also provide

199

https://github.com/srambhatla/NOODL

200

implementation of FISTA Beck and Teboulle (2009) and stochastic ISTA (without the

acceleration). These are used for the sparse approximation step by competing tech-

niques.

In addition, by leveraging our neural architecture, we also provide a completely

parallelized implementation of NOODL via TensorFlow. This implementation show-

cases how our algorithm can be used where high throughput is especially important.

7.2.2 TensorNOODL: NOODL for Structured Tensor Decomposition

The code corresponding to the structured tensor decomposition task (presented in

Chapter 3) is made available at https://github.com/srambhatla/TensorNOODL. The

implementation is in MATLAB, the code scales according to the number of workers

made available. We also provide recommendations on the step-size (for the dictionary

update step) for different dictionary sizes. The implementation relies on MATLAB’s spmd

command to process the samples.

7.2.3 D-RPCA: Dictionary-based Robust PCA

This package contains the code corresponding to the phase transition plots and the

target localization task in MATLAB. Details of specific functions and their use is made

available at https://github.com/srambhatla/Dictionary-based-Robust-PCA.

For the target localization task, the package contains option to use a dictionary

containing a few signatures corresponding to the target object or to learn a specified

number of signatures from the hyperspectral images using a dictionary learning algo-

rithm.

7.2.4 TensorMap: Lidar-Based Topological Mapping and Localization via

Tensor Decompositions

We provide the code to build TensorMaps at https://github.com/srambhatla/TensorMap.

This implementation includes code to 1) tensorize Lidar point-clouds, 2) learn Ten-

sorMap using Tucker3 decomposition, and 3) localize (using a Lidar scan) in a given

TensorMap.

https://github.com/srambhatla/TensorNOODL
https://github.com/srambhatla/Dictionary-based-Robust-PCA
https://github.com/srambhatla/TensorMap

Chapter 8

Discussion and Future Work

As learning algorithms continue to revolutionize various areas, the question of their

correctness and reliability will become central for ensuring their effectiveness. Notwith-

standing the success of black-box solutions, questions such as: what and how these

algorithms learn and how they make decisions, impede their deployment in critical

application areas. To address this need for Safe AI, we considered different learning

problems and establish guarantees on their performance. Our explorations in each

aspect of the learning problem ecosystem (Fig. 1.2) advocate for principled learning

algorithm design, and pave way for use of these techniques in critical applications like

healthcare, navigation, legal, finance, etc.

8.1 Discussion

We gain following insights from our analysis and exploration of each aspect of the

learning problem ecosystem.

Provable Dictionary Learning and Tensor Factorization – Through our work on the

dictionary learning problem (Chapter 2), where alternating minimization-based heuris-

tics work so well in practice that the problem is widely viewed as being “solved”, we

exposed the current gaps in the theoretical analysis which only focused on dictionary

recovery, and developed a provable algorithm for exact recovery of both factors (with

appropriate initialization). Our work here showcased the virtues of considering a joint

optimization problem in case of multiple unknowns. This view of the problem led to

201

202

a real-world-ready guaranteed algorithm, also explaining the success of popular alter-

nating minimization-based heuristics.

Leveraging these dictionary learning results we developed an algorithm for the

recovering the Canonical Polyadic (CP) factors of a structured tensor (Chapter 3),

wherein two of the factors are sparse and the third obeys some incoherence condi-

tions. Our algorithm, to the best of our knowledge, is the first algorithm for recovery

of the CP factors of such a structured tensor (up to scalings, permutations and sign-

flips), and finds applications in a number of data analytics tasks; see Chapter 3 for

details.

Generalization of Robust PCA – Our work on developing a dictionary-based general-

ization of robust PCA (Chapter 4 and Chapter 5) demonstrates how to leverage prior

knowledge in learning tasks. Our model is especially useful in applications where the

aim is to localize a particular target of interest, without having to learn the specifics of

the rest of the data. We leverage our our algorithm-agnostic theoretical results and con-

sider the task of identifying targets in an hyperspectral image (Chapter 5), where we

show the advantages of using our methods, while outperforming related techniques.

Tensor Decompositions for Lidar-based Navigation – Finally, our application-focused

efforts demonstrate the use of tensor decomposition techniques for efficiently learning

a topological map for navigation using Lidar data (Chapter 6). Our technique is espe-

cially useful in overcoming the challenge of navigating in feature-scarce environment

while being accurate and efficient (in terms of storage requirements).

8.2 Future Work

Our efforts in area of provable algorithms have led to some interesting observations

and questions, which pave way, and constitute promising future directions.

Explaining Success of Random Initializations – Our current theoretical results for

NOODL (Chapter 2) rely on an appropriate initialization to guarantee linear conver-

gence of estimates to the ground-truth factors. However, our experimental evaluations

indicate that NOODL also works with random initializations albeit does not have lin-

ear convergent behavior until it meets the conditions of our analysis. It is surprising

that NOODL should recover the ground-truth factors in this case, and we still don’t

know why. Theoretically, the inherent non-convexity of the problem means that we

203

Input

y(1)

y(2)

y(3)

y(4)

y(n)

Encoder

Â>1

Â>2

Â>3

Â>4

Â>5

Â>6

Â>m

IHT

IHT

IHT

IHT

IHT

IHT

IHT

Latent Space
Representation

x̂(1)

x̂(2)

x̂(3)

x̂(4)

x̂(5)

x̂(6)

x̂(m)

Decoder

Â1

Â2

Â3

Â4

Â5

Â6

Âm

Output

ŷ(1)

ŷ(2)

ŷ(3)

ŷ(4)

ŷ(n)

Figure 8.1: Future Work: Developing analysis for a one layer Sparse Autoencoder. Figure
shows how each sample of the data is processed by first forming a latent space (sparse) repre-
sentation. Next, the discrepancy between the input y and the output ŷ is used to update the
weights (dictionary elements).

can only guarantee convergence to a local stationary point. It will be interesting to de-

vise new analysis of NOODL under random initializations. Such an analysis can also

be useful to analyze contemporary deep learning architectures.

Using Dependent Samples for Learning – Both NOODL (Chapter 2) and TensorNOODL

(Chapter 3) require us to use independent (fresh) samples, which is primarily due to

the concentration results we employ. Although in practice both algorithms can be used

in batch (offline) settings, it will be interesting to translate the results of online setting

to the case of dependent samples. Any work on using dependence will be important

in extending these advances to the current exploration of deep learning structures.

Analysis for Autoencoders – NOODL’s (Chapter 2) learning procedure, i.e. alternat-

ing between an encoding and a decoding step, is analogous to that of a one layer (one

encoder and one decoder) sparse autoencoder; see Fig. 8.1 for the proposed architec-

ture. As a result, it can be used to devise analysis for such deep learning structures,

204

and also develop new encoding stratergise for training autoencoders.

Domain Adaptation and Transfer Learning Algorithms – Another promising direc-

tion is to bake existing knowledge about the data into NOODL (Chapter 2) . This will

help us to leverage side information instead of starting from scratch. Our current ef-

forts for this semi-supervised version of NOODL are aimed to develop an initialization

algorithm.

References

Agarwal, A., Anandkumar, A., Jain, P., Netrapalli, P. and Tandon, R. (2014). Learn-

ing sparsely used overcomplete dictionaries. In COLT.

Aharon, M., Elad, M. and Bruckstein, A. (2005). K-SVD: Design of Dictionaries for

Sparse Representation. In Proceedings of SPARS 9–12.

Aharon, M., Elad, M. and Bruckstein, A. (2006). k-svd: An algorithm for design-

ing overcomplete dictionaries for sparse representation. IEEE Transactions on signal

processing, 54 4311–4322.

Allen, G. (2012). Sparse higher-order principal components analysis. In Artificial

Intelligence and Statistics.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M. and Telgarsky, M. (2014). Tensor

decompositions for learning latent variable models. Journal of Machine Learning Re-

search, 15 2773–2832.

Anandkumar, A., Ge, R. and Janzamin, M. (2015). Learning overcomplete latent vari-

able models through tensor methods. In Conference on Learning Theory.

Anandkumar, A., Jain, P., Shi, Y. and Niranjan, U. N. (2016). Tensor vs. matrix meth-

ods: Robust tensor decomposition under block sparse perturbations. In Artificial

Intelligence and Statistics.

Angeli, A., Doncieux, S., Meyer, J. A. and Filliat, D. (2009). Visual topological slam

and global localization. In 2009 IEEE International Conference on Robotics and Au-

tomation (ICRA). IEEE.

Arora, S., Ge, R., Ma, T. and Moitra, A. (2015). Simple, efficient, and neural algo-

rithms for sparse coding. In COLT.

205

206

Arora, S., Ge, R. and Moitra, A. (2014). New algorithms for learning incoherent and

overcomplete dictionaries. In COLT.

Barak, B., Kelner, J. A. and Steurer, D. (2015). Dictionary learning and tensor decom-

position via the sum-of-squares method. In Proceedings of the forty-seventh annual

ACM symposium on Theory of computing. ACM.

Barthélemy, Q., Gouy-Pailler, C., Isaac, Y., Souloumiac, A., Larue, A. and Mars, J. I.

(2013). Multivariate temporal dictionary learning for eeg. Journal of neuroscience

methods, 215 19–28.

Baumgardner, M. F., Biehl, L. L. and Landgrebe, D. A. (2015). 220 Band AVIRIS

Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3, dataset

available via http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_

Remote_Sensing_Scenes.

https://purr.purdue.edu/publications/1947/1

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm

for linear inverse problems. SIAM journal on imaging sciences, 2 183–202.

Becker, H., Albera, L., Comon, P., Gribonval, R., Wendling, F. and Merlet, I. (2015).

Brain-source imaging: From sparse to tensor models. IEEE Signal Processing Maga-

zine, 32 100–112.

Besl, P. J. and McKay, N. D. (1992). Method for registration of 3-d shapes. In Robotics-

DL tentative. International Society for Optics and Photonics.

Biber, P. and Straßer, W. (2003). The normal distributions transform: A new ap-

proach to laser scan matching. In 2003 IEEE International Conference on Intelligent

Robots and Systems (IROS), vol. 3. IEEE.

Blumensath, T. and Davies, M. E. (2009). Iterative hard thresholding for compressed

sensing. Applied and computational harmonic analysis, 27 265–274.

Bobin, J., Moudden, Y., Starck, J. L. and Fadili, J. (2009). Sparsity constraints for

hyperspectral data analysis: Linear mixture model and beyond.

http://dx.doi.org/10.1117/12.826131

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://purr.purdue.edu/publications/1947/1
http://dx.doi.org/10.1117/12.826131

207

Booij, O., Terwijn, B., Zivkovic, Z. and Kröse, B. (2007). Navigation using an appear-

ance based topological map. In 2007 IEEE International Conference on Robotics and

Automation. IEEE.

Borengasser, M., Hungate, W. S. and Watkins, R. (2007). Hyperspectral remote sensing:

principles and applications. CRC press.

Candes, E. and Romberg, J. (2007). Sparsity and incoherence in compressive sampling.

Inverse problems, 23 969.

Candès, E. J., Li, X., Ma, Y. and Wright, J. (2011). Robust principal component analy-

sis? Journal of the ACM (JACM), 58 11.

Candès, E. J., Li, X. and Soltanolkotabi, M. (2015). Phase retrieval via wirtinger flow:

Theory and algorithms. IEEE Transactions on Information Theory, 61 1985–2007.

Candès, E. J. and Tao, T. (2005). Decoding by linear programming. IEEE Transactions

on Information Theory, 51 4203–4215.

Chambolle, A., Vore, R. A. D., Lee, N. Y. and Lucier, B. J. (1998). Nonlinear wavelet

image processing: variational problems, compression, and noise removal through

wavelet shrinkage. IEEE Transactions on Image Processing, 7 319–335.

Chandrasekaran, V., Sanghavi, S., Parrilo, P. A. and Willsky, A. S. (2011). Rank-

sparsity incoherence for matrix decomposition. SIAM Journal on Optimization, 21

572–596.

Chang, C. K., Siagian, C. and Itti, L. (2010). Mobile robot vision navigation & localiza-

tion using gist and saliency. In 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE.

Charles, A. S., Olshausen, B. A. and Rozell, C. J. (2011). Learning sparse codes for

hyperspectral imagery. IEEE Journal of Selected Topics in Signal Processing, 5 963–978.

Chatterji, N. and Bartlett, P. L. (2017). Alternating minimization for dictionary

learning with random initialization. In Advances in Neural Information Processing

Systems.

208

Chen, M., Ganesh, A., Lin, Z., Ma, Y., Wright, J. and Wu, L. (2009). Fast convex opti-

mization algorithms for exact recovery of a corrupted low-rank matrix. Coordinated

Science Laboratory Report no. UILU-ENG-09-2214.

Chen, S. S., Donoho, D. L. and Saunders, M. A. (1998). Atomic decomposition by

basis pursuit. SIAM Journal on Scientific Computing, 20 33–61.

https://doi.org/10.1137/S1064827596304010

Chen, Y., Jalali, A., Sanghavi, S. and Caramanis, C. (2013). Low-rank matrix recovery

from errors and erasures. IEEE Transactions on Information Theory, 59 4324–4337.

Chen, Y. and Wainwright, M. (2015a). Fast low-rank estimation by projected

gradient descent: General statistical and algorithmic guarantees. arXiv preprint

arXiv:1509.03025.

Chen, Y. and Wainwright, M. J. (2015b). Fast low-rank estimation by projected gradi-

ent descent: General statistical and algorithmic guarantees. CoRR, abs/1509.03025.

Comon, P. (1994). Independent component analysis, a new concept? Signal processing,

36 287–314.

Daubechies, I., Defrise, M. and Mol, C. D. (2004). An iterative thresholding algorithm

for linear inverse problems with a sparsity constraint. Communications on Pure and

Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sci-

ences, 57 1413–1457.

Deburchgraeve, W., Cherian, P. J., Vos, M. D., Swarte, R. M., Blok, J. H., Visser,

G. H., Govaert, P. and Huffel, S. V. (2009). Neonatal seizure localization using

parafac decomposition. Clinical Neurophysiology, 120 1787–1796.

Ding, X., He, L. and Carin, L. (2011). Bayesian robust principal component analysis.

IEEE Transactions on Image Processing, 20 3419–3430.

Donoho, D., Elad, M. and Temlyakov, V. N. (2006). Stable recovery of sparse over-

complete representations in the presence of noise. IEEE Transactions on Information

Theory, 52 6–18.

Donoho, D. L. and Huo, X. (2001a). Uncertainty principles and ideal atomic decom-

position. IEEE Transactions on Information Theory, 47 2845–2862.

https://doi.org/10.1137/S1064827596304010

209

Donoho, D. L. and Huo, X. (2001b). Uncertainty principles and ideal atomic decom-

position. IEEE Transactions on Information Theory, 47 2845–2862.

Duffin, R. J. and Schaeffer, A. C. (1952). A class of nonharmonic fourier series. Trans-

actions of the American Mathematical Society, 72 341–366.

Elad, M. (2010). Sparse and Redundant Representations: From Theory to Applications in

Signal and Image Processing. 1st ed. Springer Publishing Company, Incorporated.

Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant repre-

sentations over learned dictionaries. IEEE Transactions on Image processing, 15 3736–

3745.

Engan, K., Aase, S. O. and Husoy, J. H. (1999). Method of optimal directions for frame

design. In In Proceedings of 1999 IEEE International Conference on Acoustics, Speech,

and Signal Processing., vol. 5. IEEE.

Fraundorfer, F., Engels, C. and Nistér, D. (2007). Topological mapping, localization

and navigation using image collections. In 2007 IEEE/RSJ International Conference

on intelligent Robots and Systems (IROS). IEEE.

Fuller, W. A. (2009). Measurement error models, vol. 305. John Wiley & Sons.

Gamba, P. (2002). Pavia centre and university dataset. http://www.ehu.eus/

ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_

and_University.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A. and Brendel, W.

(2019). Imagenet-trained CNNs are biased towards texture; increasing shape bias

improves accuracy and robustness. In International Conference on Learning Represen-

tations.

https://openreview.net/forum?id=Bygh9j09KX

Geng, Q. and Wright, J. (2014). On the local correctness of `1-minimization for dictio-

nary learning. In 2014 IEEE International Symposium on Information Theory (ISIT),.

IEEE.

Gershgorin, S. A. (1931). Uber die abgrenzung der eigenwerte einer matrix 749–754.

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
https://openreview.net/forum?id=Bygh9j09KX

210

Giampouras, P. V., Themelis, K. E., Rontogiannis, A. A. and Koutroumbas, K. D.

(2016). Simultaneously sparse and low-rank abundance matrix estimation for hy-

perspectral image unmixing. IEEE Transactions on Geoscience and Remote Sensing, 54

4775–4789.

Golbabaee, M., Arberet, S. and Vandergheynst, P. (2010). Distributed compressed

sensing of hyperspectral images via blind source separation. In Forty Fourth Asilomar

Conference on Signals, Systems and Computers.

Greer, J. B. (2012). Sparse demixing of hyperspectral images. IEEE Transactions on

Image Processing, 21 219–228.

Gregor, K. and LeCun, Y. (2010). Learning fast approximations of sparse coding. In

Proceedings of the 27th International Conference on Machine Learning (ICML). Omni-

press.

Gribonval, R. and Schnass, K. (2010). Dictionary identification and sparse matrix-

factorization via `1 -minimization. IEEE Transactions on Information Theory, 56

3523–3539.

Grundlehner, B., Brown, L., Penders, J. and Gyselinckx, B. (2009). The design and

analysis of a real-time, continuous arousal monitor. In 2009 Sixth International Work-

shop on Wearable and Implantable Body Sensor Networks. IEEE.

Hanson, D. and Wright, F. T. (1971). A bound on tail probabilities for quadratic forms

in independent random variables. The Annals of Mathematical Statistics, 42 1079–

1083.

Harel, J., Koch, C. and Perona, P. (2006). Graph-based visual saliency. In Advances in

Neural Information Processing Systems.

Haupt, J. and Nowak, R. (2006). Signal reconstruction from noisy random projections.

IEEE Transactions on Information Theory, 52 4036–4048.

Heil, C. (2013). What is ... a frame? Notices of the American Mathematical Society, 60.

Hillar, C. J. and Lim, L. H. (2013). Most tensor problems are np-hard. Journal of the

ACM (JACM), 60 45.

211

Håstad, J. (1990). Tensor rank is np-complete. Journal of Algorithms, 11 644 – 654.

http://www.sciencedirect.com/science/article/pii/0196677490900146

Huang, F. and Anandkumar, A. (2015). Convolutional dictionary learning through

tensor factorization. In Feature Extraction: Modern Questions and Challenges.

Huang, K., Sidiropoulos, N. D. and Liavas, A. P. (2016). A flexible and efficient algo-

rithmic framework for constrained matrix and tensor factorization. IEEE Transac-

tions on Signal Processing, 64 5052–5065.

Huang, P. S., Chen, S. D., Smaragdis, P. and Hasegawa, M. J. (2012). Singing-voice

separation from monaural recordings using robust principal component analysis.

In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP),. IEEE.

Huang, Y., Paisley, J., Lin, Q., Ding, X., Fu, X. and Zhang, X. P. (2014). Bayesian

nonparametric dictionary learning for compressed sensing mri. IEEE Transactions

on Image Processing, 23 5007–5019.

Itti, L., Koch, C. and Niebur, E. (1998). A model of saliency-based visual attention

for rapid scene analysis. IEEE Trans. Pattern Analysis and Machine Intelligence, 20

1254–1259.

James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical

Learning, vol. 112. Springer.

Jenatton, R., Gribonval, R. and Bach, F. (2012). Local stability and robustness of

sparse dictionary learning in the presence of noise. Research report.

https://hal.inria.fr/hal-00737152

Jolliffe, I. (2002). Principal component analysis. Wiley Online Library.

Jung, A., Eldar, Y. and Görtz, N. (2014). Performance limits of dictionary learning

for sparse coding. In Signal Processing Conference (EUSIPCO), 2014 Proceedings of the

22nd European. IEEE.

Jung, A., Eldar, Y. C. and Grtz, N. (2016). On the minimax risk of dictionary learning.

IEEE Transactions on Information Theory, 62 1501–1515.

http://www.sciencedirect.com/science/article/pii/0196677490900146
https://hal.inria.fr/hal-00737152

212

Karimi, H., Nutini, J. and Schmidt, M. (2016). Linear convergence of gradient and

proximal-gradient methods under the Polyak-łojasiewicz condition. In Machine

Learning and Knowledge Discovery in Databases. Springer International Publishing,

Cham.

Kawakami, R., Matsushita, Y., Wright, J., Ben-Ezra, M., Tai, Y. W. and Ikeuchi, K.

(2011). High-resolution hyperspectral imaging via matrix factorization. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

Keshava, N. and Mustard, J. F. (2002). Spectral unmixing. IEEE Signal Processing

Magazine, 19 44–57.

Kolda, T. G. and Bader, B. (2009). Tensor decompositions and applications. SIAM

review, 51 455–500.

Kolda, T. G. and Mayo, J. R. (2011). Shifted power method for computing tensor

eigenpairs. SIAM Journal on Matrix Analysis and Applications, 32 1095–1124.

Kreutz-Delgado, K., Murray, J. F., Rao, B. D., Engan, K., Lee, T. and Sejnowski, T. J.

(2003). Dictionary learning algorithms for sparse representation. Neural computa-

tion, 15 349–396.

Kruskal, J. B. (1977). Three-way arrays: rank and uniqueness of trilinear decomposi-

tions, with application to arithmetic complexity and statistics. Linear algebra and its

applications, 18 95–138.

Lakhina, A., Crovella, M. and Diot, C. (2004). Diagnosing network-wide traffic

anomalies. In ACM SIGCOMM Computer Communication Review, vol. 34. ACM.

Lathauwer, L. D., Moor, B. D. and Vandewalle, J. (2000). A multilinear singular value

decomposition. SIAM journal on Matrix Analysis and Applications, 21 1253–1278.

Le, Q. V., Karpenko, A., Ngiam, J. and Ng, A. Y. (2011). Ica with reconstruction cost for

efficient overcomplete feature learning. In Advances in Neural Information Processing

Systems.

Lee, H., Battle, A., Raina, R. and Ng, A. Y. (2007). Efficient sparse coding algorithms.

In Advances in Neural Information Processing Systems.

213

Lee, K., Tak, S. and Ye, J. C. (2010). A data-driven sparse glm for fmri analysis using

sparse dictionary learning with mdl criterion. IEEE Transactions on Medical Imaging,

30 1076–1089.

Lewicki, M. S. and Sejnowski, T. J. (2000). Learning overcomplete representations.

Neural Comput., 12 337–365.

http://dx.doi.org/10.1162/089976600300015826

Li, N., Pfeifer, N. and Liu, C. (2017). Tensor-based sparse representation classification

for urban airborne lidar points. Remote Sensing, 9.

Li, X. and Haupt, J. (2015a). Identifying outliers in large matrices via randomized

adaptive compressive sampling. IEEE Transactions on Signal Processing, 63 1792–

1807.

Li, X. and Haupt, J. (2015b). Locating salient group-structured image features via

adaptive compressive sensing. In IEEE Global Conference on Signal and Information

Processing (GlobalSIP).

Li, X. and Haupt, J. (2015c). Outlier identification via randomized adaptive compres-

sive sampling. In IEEE International Conference on Acoustic, Speech and Signal Pro-

cessing.

Li, X. and Haupt, J. (2016). A refined analysis for the sample complexity of adaptive

compressive outlier sensing. In IEEE Workshop on Statistical Signal Processing.

Li, X., Ren, J., Rambhatla, S., Xu, Y. and Haupt, J. (2018a). Robust pca via dictionary

based outlier pursuit. In 2018 IEEE International Conference on Acoustics Speech and

Signal Processing (ICASSP). IEEE.

Li, X., Ren, J., Rambhatla, S., Xu, Y. and Haupt, J. (2018b). Robust pca via dictionary

based outlier pursuit. In 2018 IEEE International Conference on Acoustics Speech and

Signal Processing (ICASSP),. IEEE.

Li, X., Ren, J., Xu, Y. and Haupt, J. (2016a). An efficient dictionary based robust pca

via sketching. Technical Report.

Li, X., Wang, Z., Lu, J., Arora, R., Haupt, J., Liu, H. and Zhao, T. (2016b). Symmetry,

saddle points, and global geometry of nonconvex matrix factorization. arXiv preprint

arXiv:1612.09296.

http://dx.doi.org/10.1162/089976600300015826

214

Li, X., Zhao, T., Arora, R., Liu, H. and Haupt, J. (2016c). Stochastic variance reduced

optimization for nonconvex sparse learning. In International Conference on Machine

Learning.

Li, Z., Uschmajew, A. and Zhang, S. (2015). On convergence of the maximum block

improvement method. SIAM Journal on Optimization, 25 210–233.

Liu, T., Sun, J., Zheng, N., Tang, X. and Shum, H. (2007). Learning to detect a salient

object. In Proc. CVPR.

Ma, T., Shi, J. and Steurer, D. (2016). Polynomial-time tensor decompositions with

sum-of-squares. In 57th Annual Symposium on Foundations of Computer Science

(FOCS). IEEE.

Mailhé, B., Gribonval, R., Bimbot, F., Lemay, M., Vandergheynst, P. and Vesin, J. M.

(2009). Dictionary learning for the sparse modelling of atrial fibrillation in ecg sig-

nals. In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

IEEE.

Mairal, J., Bach, F., Ponce, J. and Sapiro, G. (2009). Online dictionary learning for

sparse coding. In Proceedings of the 26th Annual International Conference on Machine

Learning (ICML). ACM.

Mairal, J., Bach, F., Ponce, J. and Sapiro, G. (2010). Online Learning for Matrix Fac-

torization and Sparse Coding. Journal of Machine Learning Research, 11 19–60.

Mallat, S. G. and Zhang, Z. (1993). Matching pursuits with time-frequency dictio-

naries. IEEE Transactions on Signal Processing, 41 3397–3415.

Mardani, M., Mateos, G. and Giannakis, G. B. (2013). Recovery of low-rank plus

compressed sparse matrices with application to unveiling traffic anomalies. IEEE

Transactions on Information Theory, 59 5186–5205.

Martı́nez-Montes, s. E., Sánchez-Bornot, J. M. and Valdés-Sosa, P. A. (2008). Penal-

ized parafac analysis of spontaneous eeg recordings. Statistica Sinica 1449–1464.

McDiarmid, C. (1998). Concentration. In Probabilistic methods for algorithmic discrete

mathematics. Springer, 195–248.

215

Mehta, B. and Nejdl, W. (2008). Attack resistant collaborative filtering. In Proceedings

of ACM SIGIR Conference on Research and Development in Information Retrieval.

Milford, M. J. and Wyeth, G. F. (2012). Seqslam: Visual route-based navigation for

sunny summer days and stormy winter nights. In 2012 IEEE International Conference

on Robotics and Automation (ICRA). IEEE.

Min, K., Zhang, Z., Wright, J. and Ma, Y. (2010). Decomposing background topics

from keywords by principal component pursuit. In Proceedings of the 19th ACM

International Conference on Information and Knowledge Management. CIKM ’10, ACM,

New York, NY, USA.

http://doi.acm.org/10.1145/1871437.1871475

Mohlenkamp, M. J. (2013). Musings on multilinear fitting. Linear Algebra and its

Applications, 438 834 – 852. Tensors and Multilinear Algebra.

Morris, A., Silver, D., Ferguson, D. and Thayer, S. (2005). Towards topological explo-

ration of abandoned mines. In Proceedings of the 2005 IEEE International Conference

on Robotics and Automation (ICRA). IEEE.

Moudden, Y., Bobin, J., Starck, J. L. and Fadili, J. M. (2009). Dictionary learning

with spatio-spectral sparsity constraints. In Signal Processing with Adaptive Sparse

Structured Representations(SPARS).

Mueller, A., Himmelsbach, M., Luettel, T., Hundelshausen, F. V. and Wuensche,

H. J. (2011). Gis-based topological robot localization through lidar crossroad detec-

tion. In 2011 14th International IEEE Conference on Intelligent Transportation Systems

(ITSC). IEEE.

Mueller, F. and Lockerd, A. (2001). Cheese: tracking mouse movement activity on

websites, a tool for user modeling. In CHI’01 extended abstracts on Human factors in

computing systems. ACM.

Myronenko, A. and Song, X. (2010). Point set registration: Coherent point drift. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 32 2262–2275.

Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Journal

on Computing, 24 227–234.

http://doi.acm.org/10.1145/1871437.1871475

216

Nesterov, Y. (1983). A method of solving a convex programming problem with con-

vergence rate O(1/k2). Soviet Mathematics Doklady 27 72–376.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. 2nd ed. Springer, New

York, NY, USA.

of Technology, J. P. L. N. a. C. I. (1987). Airborne Visible/Infrared Imaging Spectrom-

eter. Available at http://aviris.jpl.nasa.gov/.

Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis

set: A strategy employed by v1? Vision research, 37 3311–3325.

Pandey, G., McBride, J. R. and Eustice, R. M. (2011). Ford campus vision and lidar

data set. International Journal of Robotics Research, 30 1543–1552.

Papalexakis, E. E., Sidiropoulos, N. D. and Bro, R. (2013). From k-means to higher-

way co-clustering: Multilinear decomposition with sparse latent factors. IEEE trans-

actions on signal processing, 61 493–506.

Park, B. and Lu, R. (2015). Hyperspectral imaging technology in food and agriculture.

Springer.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2

559–572.

https://doi.org/10.1080/14786440109462720

Rahmani, M. and Atia, G. (2015). Randomized robust subspace recovery for high

dimensional data matrices. arXiv preprint arXiv:1505.05901.

Rambhatla, S. (2012). Semi-blind source separation via sparse representations and

online dictionary learning. Masters Thesis, University of Minnesota – Twin Cities,

Minneapolis, MN.

Rambhatla, S. and Haupt, J. (2013a). Semi-blind source separation via sparse repre-

sentations and online dictionary learning. In Asilomar Conference on Signals, Systems

and Computers, 2013, vol. abs/1212.0451. IEEE.

https://arxiv.org/abs/1212.0451

http://aviris.jpl.nasa.gov/
https://doi.org/10.1080/14786440109462720
https://arxiv.org/abs/1212.0451

217

Rambhatla, S. and Haupt, J. (2013b). Semi-blind source separation via sparse repre-

sentations and online dictionary learning. In Signals, Systems and Computers, 2013

Asilomar Conference on. IEEE.

Rambhatla, S., Li, X. and Haupt, J. (2016a). A dictionary based generalization of ro-

bust PCA. In IEEE Global Conference on Signal and Information Processing (GlobalSIP),

vol. abs/1902.08171. IEEE.

https://arxiv.org/abs/1902.08171

Rambhatla, S., Li, X. and Haupt, J. (2016b). A dictionary based generalization of ro-

bust PCA. In IEEE Global Conference on Signal and Information Processing (GlobalSIP).

IEEE.

Rambhatla, S., Li, X. and Haupt, J. (2017a). Target-based hyperspectral demixing

via generalized robust PCA. In 51st Asilomar Conference on Signals, Systems, and

Computers, 2017, vol. abs/1902.11111.

https://arxiv.org/abs/1902.11111

Rambhatla, S., Li, X. and Haupt, J. (2017b). Target-based hyperspectral demixing

via generalized robust PCA. In 51st Asilomar Conference on Signals, Systems, and

Computers, ACSSC 2017, Pacific Grove, CA, USA, October 29 - November 1, 2017.

https://doi.org/10.1109/ACSSC.2017.8335372

Rambhatla, S., Li, X. and Haupt, J. (2019). NOODL: Provable online dictionary learn-

ing and sparse coding. In International Conference on Learning Representations (ICLR).

https://openreview.net/forum?id=HJeu43ActQ

Rambhatla, S., Li, X., Ren, J. and Haupt, J. (2018a). A Dictionary-Based Generalization

of Robust PCA Part I: Study of Theoretical Properties. abs/1902.08304.

https://arxiv.org/abs/1902.08304

Rambhatla, S., Li, X., Ren, J. and Haupt, J. (2018b). A Dictionary-Based General-

ization of Robust PCA Part II: Applications to Target Localization in Hyperspectral

Imaging. abs/1902.10238.

https://arxiv.org/abs/1902.10238

https://arxiv.org/abs/1902.08171
https://arxiv.org/abs/1902.11111
https://doi.org/10.1109/ACSSC.2017.8335372
https://openreview.net/forum?id=HJeu43ActQ
https://arxiv.org/abs/1902.08304
https://arxiv.org/abs/1902.10238

218

Rambhatla, S., Sidiropoulos, N. and Haupt, J. (2018c). Tensormap: Lidar-based topo-

logical mapping and localization via tensor decompositions. In IEEE Global Confer-

ence on Signal and Information Processing (GlobalSIP), vol. abs/1902.10226. IEEE.

https://arxiv.org/abs/1902.10226

Ramirez, I., Sprechmann, P. and Sapiro, G. (2010). Classification and clustering via

dictionary learning with structured incoherence and shared features. In IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition (CVPR). IEEE.

Ranzato, M., Boureau, Y. and LeCun, Y. (2008). Sparse feature learning for deep belief

networks. In Advances in Neural Information Processing Systems (NIPS). 1185–1192.

Rauhut, H. (2010). Compressive sensing and structured random matrices. Theoretical

foundations and numerical methods for sparse recovery, 9 1–92.

Razaviyayn, M., Hong, M. and Luo, Z. Q. (2013). A unified convergence analysis of

block successive minimization methods for nonsmooth optimization. SIAM Journal

on Optimization, 23 1126–1153.

Rudelson, M. and Vershynin, R. (2013). Hanson-wright inequality and sub-gaussian

concentration. Electronic Communications in Probability, 18.

Schindler, G., Brown, M. and Szeliski, R. (2007). City-scale location recognition. In

2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE.

Schramm, T. and Steurer, D. (2017). Fast and robust tensor decomposition with ap-

plications to dictionary learning. In Conference on Learning Theory.

Sharan, V. and Valiant, G. (2017). Orthogonalized als: A theoretically principled ten-

sor decomposition algorithm for practical use. In Proceedings of the 34th International

Conference on Machine Learning - Volume 70. ICML’17, JMLR.org.

http://dl.acm.org/citation.cfm?id=3305890.3306001

Siagian, C. and Itti, L. (2009). Biologically inspired mobile robot vision localization.

IEEE Transactions on Robotics, 25 861–873.

Sidiropoulos, N. D. and Bro, R. (2000). On the uniqueness of multilinear decomposi-

tion of n-way arrays. Journal of Chemometrics: A Journal of the Chemometrics Society,

14 229–239.

https://arxiv.org/abs/1902.10226
http://dl.acm.org/citation.cfm?id=3305890.3306001

219

Sidiropoulos, N. D., Lathauwer, L. D., Fu, X., Huang, K., Papalexakis, E. E. and

Faloutsos, C. (2017). Tensor decomposition for signal processing and machine

learning. IEEE Transactions on Signal Processing, 65 3551–3582.

Silveira, F., Eriksson, B., Sheth, A. and Sheppard, A. (2013). Predicting audience re-

sponses to movie content from electro-dermal activity signals. In ACM international

joint conference on Pervasive and ubiquitous computing. ACM.

Spielman, D. A., Wang, H. and Wright, J. (2012). Exact recovery of sparsely-used

dictionaries. In Conference on Learning Theory.

Sprechmann, P., Bronstein, A. M. and Sapiro, G. (2012). Real-time online singing

voice separation from monaural recordings using robust low-rank modeling. In IS-

MIR.

Starck, J. L., Moudden, Y., Bobin, J., Elad, M. and Donoho, D. L. (2005). Morphologi-

cal component analysis. In Optics & Photonics 2005. International Society for Optics

and Photonics.

Sun, R. and Luo, Z. Q. (2016). Guaranteed matrix completion via non-convex factor-

ization. IEEE Transactions on Information Theory, 62 6535–6579.

Sun, W. W., Lu, J., Liu, H. and Cheng, G. (2017). Provable sparse tensor decomposition.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79 899–916.

Tang, G. and Shah, P. (2015). Guaranteed tensor decomposition: A moment approach.

In International Conference on Machine Learning.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological) 267–288.

Toh, K. C. and Yun, S. (2010). An accelerated proximal gradient algorithm for nuclear

norm regularized linear least squares problems. Pacific Journal of optimization, 6 15.

Tosic, I., Jovanovic, I., Frossard, P., Vetterli, M. and Duric, N. (2010). Ultrasound

tomography with learned dictionaries. In Proceedings of the IEEE International Con-

ference on Acoustics, Speech, and Signal Processing. CONF.

Tropp, J. (2015). An introduction to matrix concentration inequalities. Foundations and

Trends® in Machine Learning, 8 1–230.

220

Tu, S., Boczar, R., Soltanolkotabi, M. and Recht, B. (2015). Low-rank solutions of

linear matrix equations via procrustes flow. arXiv preprint arXiv:1507.03566.

Tucker, L. R. and Ledyard, R. (1966). Some mathematical notes on three-mode factor

analysis. Psychometrika, 31 279–311.

Uschmajew, A. (2012). Local convergence of the alternating least squares algorithm for

canonical tensor approximation. SIAM Journal on Matrix Analysis and Applications,

33 639–652.

Wainwright, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity

recovery using `1-constrained quadratic programming (Lasso). IEEE Transactions on

Information Theory, 55 2183–2202.

Wang, J., Zha, H. and Cipolla, R. (2006). Coarse-to-fine vision-based localization by

indexing scale-invariant features. IEEE Transactions on Systems, Man, and Cybernet-

ics, Part B: Cybernetics, 36 413–422.

Watson, G. (1992). Characterization of the subdifferential of some matrix norms. Lin-

ear Algebra and its Applications, 170 33 – 45.

http://www.sciencedirect.com/science/article/pii/0024379592904072

Winkler, J. K., Fink, C., Toberer, F., Enk, A., Deinlein, T., Hofmann-Wellenhof, R.,

Thomas, L., Lallas, A., Blum, A., Stolz, W. and Haenssle, H. A. (2019). Associa-

tion Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Perfor-

mance of a Deep Learning Convolutional Neural Network for Melanoma Recogni-

tion. JAMA Dermatology.

https://doi.org/10.1001/jamadermatol.2019.1735

Wright, J., Ganesh, A., Min, K. and Ma, Y. (2013). Compressive principal component

pursuit. Information and Inference, 2 32–68.

Xing, Z., Zhou, M., Castrodad, A., Sapiro, G. and Carin, L. (2012). Dictionary learn-

ing for noisy and incomplete hyperspectral images. SIAM Journal on Imaging Sci-

ences, 5 33–56.

http://dx.doi.org/10.1137/110837486

Xu, H., Caramanis, C. and Sanghavi, S. (2010). Robust pca via outlier pursuit. In

Neural Information Processing Systems.

http://www.sciencedirect.com/science/article/pii/0024379592904072
https://doi.org/10.1001/jamadermatol.2019.1735
http://dx.doi.org/10.1137/110837486

221

Yu, Y., Wang, T. and Samworth, R. J. (2014). A useful variant of the davis–kahan

theorem for statisticians. Biometrika, 102 315–323.

Yuan, X., Li, P. and Zhang, T. (2016). Exact recovery of hard thresholding pursuit. In

Advances in Neural Information Processing Systems.

Zhang, J. and Singh, S. (2014). Loam: Lidar odometry and mapping in real-time. In

Robotics: Science and Systems Conference (RSS).

Zhang, J. and Singh, S. (2015). Visual-lidar odometry and mapping: Low-drift, robust,

and fast. In IEEE International Conference on Robotics and Automation (ICRA). IEEE.

Zhang, T. and Golub, G. (2001). Rank-one approximation to high order tensors. SIAM

Journal on Matrix Analysis and Applications, 23 534–550.

Zhou, Z., Li, X., Wright, J., Candès, E. J. and Ma, Y. (2010). Stable principal com-

ponent pursuit. In Information Theory Proceedings (ISIT), 2010 IEEE International

Symposium on. IEEE.

Appendix A

Acronyms

Table A.1: Acronyms

Acronym Meaning

ICA Independent Component Analysis

LASSO Least Absolute Shrinkage and Selection Operator

MCA Morphological Component Analysis

NNMF Non-Negative Matrix Factorization

HS Hyper-Spectral

Lidar Light Detection and Ranging

MF Matched Filtering

OP Outlier Pursuit

PCA Principal Component Analysis

RLC Resistance-Inductance-Capacitance

RPCA Robust Principal Component Analysis

NOODL Neurally plausible alternating Optimization-based Online Dic-

tionary Learning

TensorNOODL Neurally plausible alternating Optimization-based Online Dic-

tionary Learning for structured Tensor factorization

TensorMap An algorithm for building Lidar-based Topological Maps via Ten-

sor Decompositions and Localizing in them

D-RPCA Dictionary-based Robust Principal Component Analysis

Continued on next page

222

223

Table A.1 – continued from previous page

Acronym Meaning

D-RPCA(E) Dictionary-based Robust Principal Component Analysis with

Entry-wise sparsity

D-RPCA(C) Dictionary-based Robust Principal Component Analysis with

Column-wise sparsity

SBMCA Semi-Blind Morphological Component Analysis

SVD Singular Value Decomposition

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation
	Doctoral Research Contributions
	Early Motivations: Semi-blind source separation
	Dictionary-based generalization of Robust PCA
	Provable Algorithm for Dictionary learning
	Provable Structured Tensor Factorization
	Lidar-Based Topological Mapping and Localization

	Organization
	Notation

	I Algorithm-Aware Matrix and Tensor Factorization
	Provable Online Dictionary Learning and Sparse Coding
	Overview
	Introduction
	Summary of Our Contributions
	Related Works

	Algorithm
	Main Result
	Neural implementation of NOODL
	Experiments
	Convergence Analysis
	Phase transitions

	Future Work
	Conclusions

	Appendices
	Summary of Notation
	Proof of Theorem 2.1
	Appendix: Proof of Lemmas
	Appendix: Proofs of intermediate results
	Additional Experimental Results
	Coefficient Recovery
	Computational Time

	Appendix: Standard Results
	Concentration results
	Results from Arora15

	Provable Structured Tensor Factorization via Dictionary Learning
	Overview
	Introduction
	Overview of the algorithm
	Contributions
	Related works

	Problem Formulation
	Algorithm
	Main Result
	Numerical Simulations
	Discussion and Conclusions

	Appendices
	Summary of Notation
	Proof of Theorem 1
	Proof of Intermediate Results
	Additional Theoretical Results
	Experimental Set-up and Additional Experimental Results
	Experimental Set-up
	Additional Results

	II Algorithm-Agnostic Matrix Demixing
	Dictionary-based Generalization of Robust PCA
	Overview
	Introduction
	Background
	Our Contributions

	Preliminaries
	Optimality of the Solution Pair
	Conditions on the Dictionary
	Relevant Subspaces
	Incoherence Measures and Other Parameters

	Main Results
	Exact Recovery for Entry-wise Sparsity Case
	Exact Recovery for Column-wise Sparsity Case

	Numerical Simulations
	Entry-Wise Sparsity Case
	Column-wise Sparsity Case

	Conclusions and Future Work

	Appendices
	Summary of Notation
	Proof of Main Results
	Proofs for Entry-wise Case: Proof of Theorem 4.1
	Proofs for Column-wise Case: Proof of Theorem 4.2

	Proofs of Intermediate Results
	Proofs for Entry-wise Case
	Proofs for Column-wise Case

	Target Localization in Hyperspectral Images
	Overview
	Introduction
	Model
	Our Contributions
	Prior Art
	Related Techniques

	Problem Formulation
	Optimization problems
	Conditions on the Dictionary
	Relevant Subspaces
	Incoherence Measures

	Theoretical Results
	Exact Recovery for Entry-wise Sparsity Case
	Recovery for Column-wise Sparsity Case

	Algorithmic Considerations
	Background
	Discussion of Algorithm 4
	Parameter Selection

	Experimental Evaluation
	Data
	Dictionary
	Experimental Setup
	Parameter Setup for the Algorithms
	Analysis

	Conclusions

	III Application-Focused Techniques
	Lidar-Based Topological Mapping and Localization via Tensor Decompositions
	Overview
	Introduction
	Prior-Art
	 Summary of Our Technique
	Our Contributions

	Problem formulation
	Modeling Lidar data as a Tensor
	Building TensorMap
	Localizing in TensorMap
	Memory Considerations

	Numerical Evaluations
	Experimental Set-up
	Selecting the Parameters
	Results
	Effect of Gaussian noise and Translations
	Compression Ratio
	Other Applications and Future Work

	Conclusions

	IV Tools
	Software Resources
	Reproducible Research
	Software Packages Developed
	NOODL: Neurally plausible alternating Optimization-based Online Dictionary Learning
	TensorNOODL: NOODL for Structured Tensor Decomposition
	D-RPCA: Dictionary-based Robust PCA
	TensorMap: Lidar-Based Topological Mapping and Localization via Tensor Decompositions

	Discussion and Future Work
	Discussion
	Future Work

	References
	 Appendix A. Acronyms

