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THE LAST TIME | WAS AT THE MINNESOTA
ORCHESTRA..

MOTIVATION
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How Do | IDENTIFY WHAT CELLO
SOUNDS LIKE?

MOTIVATION
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THE COCKTAIL PARTY PROBLEM :
BLIND SOURCE SEPARATION

£ N

]

[1  Muiltiple speakers are simultaneously speaking
[1 The aim is to separately comprehend each speaker.

[1  None of the sources are known a-priori - Blind Source Separation Problem
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CONSIDER AN AUDIO FORENSICS
APPLICATION

- Not Delivering Current

Delivering Current

Electro-shock Law enforcement devices generate characteristic Nominally
Periodic signals, indicating discharge of current.

These signals are often corrupted by background noise like speech, etc., not known
a-priori.

MOTIVATION
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AUDIO FORENSICS APPLICATION:
SINGLE CHANNEL SOURCE SEPARATION

L1 It is of interest to detect if the device is delivering current or not from a single
mixture of the sources, referred to as Single=-Channel Source Separation

[1  On the whole, A Single Channel Semi-Blind Source Separation problem.

Nominally Periodic signal z, € R"

Approximate Periodicity

> <€

Single Linear Mixture
r e R"

Background Noise Z» € R"

MOTIVATION
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OUTLINE : BIRD’S EYE VIEW OF THE
PRESENTATION

Background: Setting the stage

Semi-Blind Morphological Component Analysis (SBMCA)

Evaluation of SBMCA : Simulation Specifics

Conclusions and Future Work
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BACKGROUND




We suppose that, m is an integer which divides n into q equal parts

x is represented by matrix X € R™*? and

) B @i

The aim is to separate X into its constituent matrices X, and X,
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TRUNCATED-SINGULAR VALUE
DECOMPOSITION(SVD)

Let X, be a rank-r matrix and X, be random Gaussian noise.

Estimating X, is equivalent to finding a rank-r approximation of X

Low=-Kalnle
Approxima&am
BACKGROUND
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RoBusT PCALZ]

Let Xy be comprised of impulsive noise, in such a case we adopt
Robust PCA, leading to following decomposition :

BACKGROUND
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Low-RANK PLUS SPARSE INA KNOWN DICTIONARY![3!

In case X, is sparse in some known dictionary,

Low=-Ralnlke M:&Eim\&r'ﬁ
S[zem'se

BACKGROUND
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MORPHOLOGICAL COMPONENT ANALYSIS4>6]

Another extension: X, and X, are both sparse in some known
dictionaries, represented as :

ﬁi&%iomar:j Coefficients

BACKGROUND
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REVISITING THE CELLIST:
SO, How Do | IDENTIFY WHAT CELLO SOUNDS LIKE!?

| can listen to a sample of | know how other
Cello before the next act. instruments sound.

| Train my ears to Cello. | Learn the features of
Cello by employing my

Training data required. prior Experience with
other instruments.

An Online methodology.
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REVISITING THE CELLIST:
How DO | IDENTIFY WHAT CELLO SOUNDS LIKE!?

| can listen to a sample of | | know how other
Cello before the next act. | instruments sound.

| Train my ears to Cello. | Learn the features of
| Cello by employing my
Training data required. ‘ prior Experience with
other instruments.

An Online methodology.
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SEMI-BLIND MORPHOLOGICAL
COMPONENT ANALYSIS

(SBMCA)




SEMI-BLIND MORPHOLOGICAL COMPONENT
ANALYSISL’]

o

%%

= e - Da

[¢==Kinown=>|¢====Unkinown=---3|

D
ma‘:&m\&rj Coefficients

SBMCA
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SEMI-BLIND MORPHOLOGICAL COMPONENT ANALYSIS:
ALGORITHMIC CONSIDERATIONS

Formally we set out to solve

{41, A3, Dy} = arg min || X — D1 A; — Dads||% + || Ax|ls + Aol Az)x
for Xl, Xz > ()

A1,A2,Do

This optimization problem is

Not jointly convex

Sensitive to initialization

We adopt

Alternating Minimization based approach for Online Dictionary
Learning!®?1°]

SBMCA
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SEMI-BLIND MORPHOLOGICAL COMPONENT ANALYSIS
ALGORITHMIC DETAILS

Algorithm 1: Seml-Blmd MCA Algonthm

Input: Original Data X € R™*¢, Known Dictionary D, € R™*¢,
Regularization parameters A1, Az, Az > 0,

Number of elements in unknown dictionary £.

Initialize: A; « argmln | X - D1A1\|,ﬂ + A1 A1

(or other suitable 1n1t1almat10n depending on the problem.)

Iterate (repeat until convergence):

repeat

Dictionary Learning:
{Dy, A2} « arg min |X - D1 Ay - DaAs|% + Ao Az
Coefficient Update: o
D =[D; Ds]
[Zf‘ /Tﬁ]l A« a.rgAmin X - EA"%' + Az] Allx

until convergence

Output: Learned dictionary Dy « D,
Coefficient estimates A; = A}, Ay = As.
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EVALUATION OF
PERFORMANCE




SIGNAL CONFIGURATION
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EVALUATION_
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DATA GENERATION

Data formed from a mixture of Speech' (unknown) and nominally
periodic signal (one per period)

Data matrix looks like,

L&
I

| Speech Samples obtained from VoxForge Speech Corpus: www.voxforge.org/home EVALU ATI O N
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http://www.voxforge.org/home
http://www.voxforge.org/home

FREQUENCY DOMAIN SOURCE
SEPARATION
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SOURCE SEPARATION IN FREQUENCY DOMAIN

Table 1: Analysis of reconstruction SNR(in dB): Frequency Domain Separation

Noise N(0,0%) o =0 o = 0.001 o = 0.01 o =0.1
Method \ Signal B T 1, oy an i "

SBMCA 8.95 | 15.21 | 8.91 | 15.17 | 883 | 15.09 | 6.80
MCA-DCT-Fourier 881 | 15.16 | 881 | 15.16 | 8.88 | 15.19 | 6.82
MCA-Identity-Fourier| 1.19 | -19.07 | 1.19 | -19.07 | 1.19 | -18.90 | 1.34

EVALUATION
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SOURCE SEPARATION IN FREQUENCY DOMAIN:
NOMINALLY PERIODIC SIGNAL
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SOURCE SEPARATION IN FREQUENCY DOMAIN: NOMINALLY PERIODIC
SIGNAL

Original Mixture

MCA-DCT-Fourier

| MCA-Identity-Fourier

3
o 2
©
-
=
a0
€
<C

2

3

Amplitude

© I

Amplitude
e

©

Amplitude

|
S

| | | | |
3000 4000 5000 6000 7000
Samples

P

o

| | |
4000 5000 6000
I I I

e

| | | |
4000 5000 6000 7000
Samples

| | | |
4000 5000 6000 7000
Samples

Sunday, December 9, 12



SOURCE SEPARATION IN FREQUENCY DOMAIN:
BACKGROUND SIGNAL
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SOURCE SEPARATION IN FREQUENCY DOMAIN: BACKGROUND SIGNAL
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TIME DOMAIN SOURCE SEPARATION

MCA-DCT

MCA-Identity == |dentity
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SOURCE SEPARATION IN TIME DOMAIN

Table 2: Analysis of reconstruction SNR(in dB): Time Domain Separation

Noise N(0,0%) oc=0 o = 0.001 o = 0.01 o — (0.1
Method \ Signal Ty 1 T . i iy i

SBMCA 23.72 | 29.32 | 23.73 | 29.32 | 23.08 | 27.40 | 19.72
MCA-DCT 20.44 | 26.02 | 20.46 | 26.02 | 20.19 | 24.96 18.09
MCA-Identity 10.90 16.06 10.90 16.44 10.90 16.33 10.78

EVALUATION
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SOURCE SEPARATION IN TIME DOMAIN:
NOMINALLY PERIODIC SIGNAL
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SOURCE SEPARATION IN TIME DOMAIN: NOMINALLY PERIODIC SIGNAL
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SOURCE SEPARATION IN TIME DOMAIN:
BACKGROUND SIGNAL
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SOURCE SEPARATION IN TIME DOMAIN: BACKGROUND SIGNAL
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CONCLUSIONS

Our approach exploits partial prior knowledge of one of the sources, in the form of a
dictionary which sparsely represents local segments of one of the sources. A key
feature being online learning of a dictionary (from the mixed source data itself) for
representing the unknown background source.

The timing uncertainty inherent in our application suggests that our approach may be
combined with other existing alignment techniques [I |, 12, 13].

More recently [14] proposed a robust alignment procedure that can be viewed as an
extension of robust PCA.

We defer these extensions, as well as the investigation of our approach to other
applications (e.g., in image or video processing)to future efforts.

Sunday, December 9, 12



REFERENCES

E.]. Cand’es, X. Li,Y. Ma, and J.Wright. Robust Principal Component Analysis? Journal of the ACM, 58(3):11,2011I.

V. Chandrasekaran, S. Sanghavi, P.A. Parrilo, and A. S.Willsky. Rank-Sparsity Incoherence for Matrix Decomposition. Society for Industrial and Applied
Mathe- matics (SIAM) Journal on Optimization, 21(2):572-596, 201 |.

M. Mardani, G. Mateos, and G. B. Giannakis. Recovery of Low-Rank Plus Com- pressed Sparse Matrices with Application to Unveiling Traffic
Anomalies. IEEE Transactions on Information Theory, 2012. Online: arXiv:1204.6537v1 [c¢s.IT].

J. L. Starck, M. Elad, and D. L. Donoho. Image Decomposition via the Combination of Sparse Representations and a Variational Approach. IEEE
Transactions on Image Processing, 14(10):1570—-1582,2005.

D. L. Donoho and G. Kutyniok. Microlocal Analysis of the Geometric Separation Problem. CoRR, abs/1004.3006, 2010.

J. Bobin, J. L. Starck, J. Fadili,Y. Moudden, and D. L. Donoho. Morphological Component Analysis: An Adaptive Thresholding Strategy. IEEE Transactions
on Image Processing, 16(11):2675-2681,2007.

S. Rambhatla and J. Haupt. Semi-Blind Source Separation via Sparse Represen- tations and Online Dictionary Learning. submitted to |EEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013. Online: arXiv:1212.0451 [¢s.SD].

B.A. Olshausen and D. ]. Field. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V 1?Vision Research, 37(23):3311-3325, 1997.
M.Aharon, M. Elad, and A. Bruckstein. K-SVD: Design of Dictionaries for Sparse Representation. In Proceedings of SPARS05, pages 9—-12, 2005.

. J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online Learning for Matrix Fac- torization and Sparse Coding. Journal of Machine Learning Research, | 1:19-
60,2010.

. B.).Frey and N. Jojic. Transformed Component Analysis: Joint Estimation of Spatial Transformations and Image Components. In Proceedings of the
IEEE International Conference on Computer Vision, pages | 190—1196, 1999.

. B.).Frey and N. Jojic. Transformation-Invariant Clustering using the EM Algo- rithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25:1-17,2003.

. A.Vedaldi, G. Guidi, and S. Soatto. Joint Data Alignment Up to (Lossy) Trans- formations. In CVPR. IEEE Computer Society, 2008.

. Y.Peng,A. Ganesh, ].Wright,W. Xu, and Y. Ma. RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images. In
CVPR, pages 763-770. IEEE, 2010.

Sunday, December 9, 12



THANK Y0U!




