MASTER'S THESIS ON

SEMI-BLIND SOURCE SEPARATION VIA SPARSE REPRESENTATIONS AND ONLINE DICTIONARY LEARNING

BY

SIRISHA RAMBHATLA

ADVISOR: PROF. JARVIS HAUPT

THE LAST TIME I WAS AT THE MINNESOTA ORCHESTRA..

HOW DO I IDENTIFY WHAT CELLO SOUNDS LIKE?

MOTIVATION

THE COCKTAIL PARTY PROBLEM: BLIND SOURCE SEPARATION

- ☐ Multiple speakers are simultaneously speaking
- The aim is to separately comprehend each speaker.
- None of the sources are known a-priori Blind Source Separation Problem

CONSIDER AN AUDIO FORENSICS APPLICATION

- Electro-shock Law enforcement devices generate characteristic **Nominally Periodic** signals, indicating discharge of current.
- These signals are often corrupted by background noise like speech, etc., not known *a-priori*.

MOTIVATION

AUDIO FORENSICS APPLICATION: SINGLE CHANNEL SOURCE SEPARATION

- It is of interest to detect if the device is delivering current or not from a single mixture of the sources, referred to as **Single-Channel Source Separation**
- On the whole, A Single Channel Semi-Blind Source Separation problem.

Nominally Periodic signal $x_p \in \mathbb{R}^n$

Background Noise $x_u \in \mathbb{R}^n$

MOTIVATION

OUTLINE: BIRD'S EYE VIEW OF THE PRESENTATION

- ☐ Background: Setting the stage
- ☐ Semi-Blind Morphological Component Analysis (SBMCA)
- ☐ Evaluation of SBMCA : Simulation Specifics
- ☐ Conclusions and Future Work

MODEL

- We suppose that, m is an integer which divides n into q equal parts

$$X = X_p + X_u$$

 \square The aim is to separate X into its constituent matrices X_p and X_u

TRUNCATED-SINGULAR VALUE DECOMPOSITION(SVD)

- \square Let X_p be a rank-r matrix and X_u be random Gaussian noise.
- \square Estimating X_p is equivalent to finding a rank-r approximation of X

ROBUST PCA[1,2]

Let X_u be comprised of impulsive noise, in such a case we adopt Robust PCA, leading to following decomposition :

LOW-RANK PLUS SPARSE IN A KNOWN DICTIONARY[3]

☐ In case X_u is sparse in some known dictionary,

Dictionary
Sparse

MORPHOLOGICAL COMPONENT ANALYSIS^[4,5,6]

Another extension: X_p and X_u are both sparse in some known dictionaries, represented as :

ADCT

 A_{EYE}

Data

Dictionary

Coefficients

REVISITING THE CELLIST: So, How Do I Identify What Cello Sounds Like?

- I can listen to a sample ofCello before the next act.
- ☐ I **Train** my ears to Cello.
- ☐ Training data required.

- Or
- ☐ I know how other instruments sound.
- I Learn the features of Cello by employing my prior Experience with other instruments.
- ☐ An **Online** methodology.

REVISITING THE CELLIST: HOW DO I IDENTIFY WHAT CELLO SOUNDS LIKE?

Motivation for our approach

I can listen to a sample ofCello before the next act.

Or

☐ I **Train** my ears to Cello.

☐ Training data required.

- I know how other instruments sound.
 - ☐ I **Learn** the features of Cello by employing my prior **Experience** with other instruments.
 - An **Online** methodology.

SEMI-BLIND MORPHOLOGICAL COMPONENT ANALYSIS^[7]

Dictionary

Coefficients

SBMCA

SEMI-BLIND MORPHOLOGICAL COMPONENT ANALYSIS: ALGORITHMIC CONSIDERATIONS

☐ Formally we set out to solve

$$\{\widehat{A}_{1}, \widehat{A}_{2}, \widehat{D}_{2}\} = \underset{A_{1}, A_{2}, D_{2}}{\operatorname{arg min}} \|X - D_{1}A_{1} - D_{2}A_{2}\|_{F}^{2} + \widetilde{\lambda}_{1} \|A_{1}\|_{1} + \widetilde{\lambda}_{2} \|A_{2}\|_{1}$$

$$for \ \widetilde{\lambda}_{1}, \ \widetilde{\lambda}_{2} > 0$$

- ☐ This optimization problem is
 - ☐ Not jointly convex
 - Sensitive to initialization
- ☐ We adopt
 - Alternating Minimization based approach for Online Dictionary Learning^[8,9,10]

SBMCA

SEMI-BLIND MORPHOLOGICAL COMPONENT ANALYSIS ALGORITHMIC DETAILS

Algorithm 1: Semi-Blind MCA Algorithm

Input: Original Data $X \in \mathbb{R}^{m \times q}$, Known Dictionary $D_1 \in \mathbb{R}^{m \times d}$,

Regularization parameters $\lambda_1, \lambda_2, \lambda_3 > 0$,

Number of elements in unknown dictionary ℓ .

Initialize: $\widetilde{A}_1 \leftarrow \underset{A_1}{\operatorname{arg\,min}} \|X - D_1 A_1\|_F^2 + \lambda_1 \|A_1\|_1$

(or other suitable initialization depending on the problem.)

Iterate (repeat until convergence):

repeat

Dictionary Learning:

$$\{\widetilde{D}_2, \widetilde{A}_2\} \leftarrow \underset{D_2, A_2}{\arg \min} \ \|X - D_1 \widetilde{A}_1 - D_2 A_2\|_F^2 + \lambda_2 \|A_2\|_1$$

Coefficient Update:

$$\begin{split} \widetilde{D} &= \begin{bmatrix} D_1 \ \widetilde{D}_2 \end{bmatrix} \\ [\widetilde{A}_1^T \ \widetilde{A}_2^T]^T \triangleq \widetilde{A} \leftarrow \underset{A}{\operatorname{arg \; min}} \ \|X - \widetilde{D}A\|_F^2 + \lambda_3 \|A\|_1 \end{split}$$

until convergence

Output: Learned dictionary $\widehat{D}_2 \leftarrow \widetilde{D}_2$,

Coefficient estimates $\widehat{A}_1 = \widetilde{A}_1$, $\widehat{A}_2 = \widetilde{A}_2$.

SBMCA

SIGNAL CONFIGURATION

Nominally Periodic Signal

Unknown Background Signal

Linear Mixture

EVALUATION

DATA GENERATION

- Data formed from a mixture of Speech¹ (unknown) and nominally periodic signal (one per period)
- Data matrix looks like,

Speech Samples obtained from VoxForge Speech Corpus: www.voxforge.org/home

EVALUATION

FREQUENCY DOMAIN SOURCE SEPARATION

SOURCE SEPARATION IN FREQUENCY DOMAIN

Table 1: Analysis of reconstruction SNR(in dB): Frequency Domain Separation

Noise $\mathcal{N}(0, \sigma^2)$	$\sigma = 0$		$\sigma =$	0.001	$\sigma = 0.01$		$\sigma = 0.1$	
Method \ Signal	x_p	x_u	x_p	x_u	x_p	x_u	x_p	x_u
SBMCA	8.95	15.21	8.91	15.17	8.83	15.09	6.80	11.56
MCA-DCT-Fourier	8.81	15.16	8.81	15.16	8.88	15.19	6.82	12.50
MCA-Identity-Fourier	1.19	-19.07	1.19	-19.07	1.19	-18.90	1.34	-9.57

EVALUATION

SOURCE SEPARATION IN FREQUENCY DOMAIN: Nominally Periodic Signal

Source Separation in Frequency Domain: Nominally Periodic Signal

 $\sigma = 0$

Original Mixture

SBMCA

MCA-DCT-Fourier

MCA-Identity-Fourier

SOURCE SEPARATION IN FREQUENCY DOMAIN: BACKGROUND SIGNAL

SOURCE SEPARATION IN FREQUENCY DOMAIN: BACKGROUND SIGNAL

 $\sigma = 0$

Original Mixture

SBMCA

MCA-DCT-Fourier

MCA-Identity-Fourier

TIME DOMAIN SOURCE SEPARATION Method **SBMCA** Unknown MCA-DCT Identity MCA-Identity

SOURCE SEPARATION IN TIME DOMAIN

Table 2: Analysis of reconstruction SNR(in dB): Time Domain Separation

Noise $\mathcal{N}(0, \sigma^2)$	$\sigma = 0$		$\sigma = 0$	0.001	$\sigma = 0.01$		$\sigma = 0.1$	
Method \ Signal	x_p	x_u	x_p	x_u	x_p	x_u	x_p	x_u
SBMCA	23.72	29.32	23.73	29.32	23.08	27.40	19.72	16.84
MCA-DCT	20.44	26.02	20.46	26.02	20.19	24.96	18.09	16.72
MCA-Identity	10.90	16.06	10.90	16.44	10.90	16.33	10.78	11.44

EVALUATION

SOURCE SEPARATION IN TIME DOMAIN: NOMINALLY PERIODIC SIGNAL

EVALUATION

SOURCE SEPARATION IN TIME DOMAIN: NOMINALLY PERIODIC SIGNAL

 $\sigma = 0$

Original Mixture

SBMCA

MCA-DCT

MCA-Identity

SOURCE SEPARATION IN TIME DOMAIN: BACKGROUND SIGNAL

SOURCE SEPARATION IN TIME DOMAIN: BACKGROUND SIGNAL

 $\sigma = 0$

Original Mixture

SBMCA

MCA-DCT

MCA-Identity

CONCLUSIONS

- Our approach exploits partial prior knowledge of one of the sources, in the form of a dictionary which sparsely represents local segments of one of the sources. A key feature being online learning of a dictionary (from the mixed source data itself) for representing the unknown background source.
- The timing uncertainty inherent in our application suggests that our approach may be combined with other existing alignment techniques [11, 12, 13].
- More recently [14] proposed a robust alignment procedure that can be viewed as an extension of robust PCA.
- We defer these extensions, as well as the investigation of our approach to other applications (e.g., in image or video processing) to future efforts.

REFERENCES

- 1. E. J. Cand'es, X. Li, Y. Ma, and J. Wright. Robust Principal Component Analysis? Journal of the ACM, 58(3):11, 2011.
- 2. V. Chandrasekaran, S. Sanghavi, P.A. Parrilo, and A. S. Willsky. Rank-Sparsity Incoherence for Matrix Decomposition. Society for Industrial and Applied Mathe-matics (SIAM) Journal on Optimization, 21(2):572–596, 2011.
- 3. M. Mardani, G. Mateos, and G. B. Giannakis. Recovery of Low-Rank Plus Com- pressed Sparse Matrices with Application to Unveiling Traffic Anomalies. IEEE Transactions on Information Theory, 2012. Online: arXiv:1204.6537v1 [cs.IT].
- 4. J. L. Starck, M. Elad, and D. L. Donoho. Image Decomposition via the Combination of Sparse Representations and a Variational Approach. IEEE Transactions on Image Processing, 14(10):1570–1582, 2005.
- 5. D. L. Donoho and G. Kutyniok. Microlocal Analysis of the Geometric Separation Problem. CoRR, abs/1004.3006, 2010.
- 6. J. Bobin, J. L. Starck, J. Fadili, Y. Moudden, and D. L. Donoho. Morphological Component Analysis: An Adaptive Thresholding Strategy. IEEE Transactions on Image Processing, 16(11):2675–2681, 2007.
- 7. S. Rambhatla and J. Haupt. Semi-Blind Source Separation via Sparse Representations and Online Dictionary Learning. submitted to IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013. Online: arXiv:1212.0451 [cs.SD].
- 8. B.A. Olshausen and D. J. Field. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Vision Research, 37(23):3311–3325, 1997.
- 9. M.Aharon, M. Elad, and A. Bruckstein. K-SVD: Design of Dictionaries for Sparse Representation. In Proceedings of SPARS05, pages 9–12, 2005.
- 10. J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online Learning for Matrix Fac- torization and Sparse Coding. Journal of Machine Learning Research, 11:19–60, 2010.
- 11. B. J. Frey and N. Jojic. Transformed Component Analysis: Joint Estimation of Spatial Transformations and Image Components. In Proceedings of the IEEE International Conference on Computer Vision, pages 1190–1196, 1999.
- 12. B. J. Frey and N. Jojic. Transformation-Invariant Clustering using the EM Algo- rithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25:1–17, 2003.
- 13. A. Vedaldi, G. Guidi, and S. Soatto. Joint Data Alignment Up to (Lossy) Trans- formations. In CVPR. IEEE Computer Society, 2008.
- 14. Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images. In CVPR, pages 763–770. IEEE, 2010.

