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ABSTRACT
In this paper, we examine the problem of locating vector out-
liers from a large number of inliers, with a particular focus on
the case where the outliers are represented in a known basis or
dictionary. Using a convex demixing formulation, we provide
provable guarantees for exact recovery of the space spanned
by the inliers and the supports of the outlier columns, even
when the rank of inliers is high and the number of outliers is
a constant proportion of total observations. Comprehensive
numerical experiments on both synthetic and hyper-spectral
imaging real datasets demonstrate the efficiency of our pro-
posed method.

Index Terms— robust PCA, outlier identification , hyper-
spectral imaging

1. INTRODUCTION

Suppose we observe a data matrix M ∈ Rn1×n2 , which we
assume admits a decomposition of the form:

M = L + DC + N, (1)
where D ∈ Rn1×d is a known dictionary, L ∈ Rn1×n2 is
unknown, with rank(L) = r, C ∈ Rd×n2 is an unknown
but column-wise sparse matrix and N ∈ Rn1×n2 is an un-
known matrix modeling error. We denote the column sup-
ports of C (the set of non-zero columns) as csupp(C) = IC
and assume |IC| = k. In this model, we refer to the non-
zero columns of DC as outliers; they are assumed to not be
in the column space of L, denoted by U = span{col(L)}.
Similarly, we call the rest of the columns of L as inliers, in-
dexed by IL = [n2]\IC with |IL| = n2 − k = nL and
[n2] = {1, . . . , n2}. Given the data matrix M and the dic-
tionary D, our specific goal is to recover the column space U
and the indices of outliers IC.

Model (1) can be viewed as a generalization of princi-
pal component analysis (PCA) [1], where the goal is to es-
timate a low dimensional embedding of given data, and its
robust variants, where the data is contaminated by sparse out-
liers [2–5]. The investigation of outlier identification is mo-
tivated by a number of contemporary “big data” applications,
where the outliers themselves may be of interest, such as iden-
tifying malicious responses in collaborative filtering applica-
tions [6], finding anomalous patterns in network traffic [7] or

estimating visually salient regions of images [8–10]. More
recently, there has been increasing interest in outlier identi-
fication with known bases, motivated by real world applica-
tions, e.g., functional magnetic resonance imaging [11], video
processing [12], network tracking [13,14], and hyper-spectral
(HS) imaging [15,16]. However, no rigorous analyses of iden-
tifiability of the model (1) have been provided, motivating our
investigation here.

Our Approach: For any pair (L0,C0), we say (L0,C0) is in
the oracle model {M,U , IC}, i.e., (L0,C0) ∈ {M,U , IC},
if PU (L0) = L0, PC(DC0) = DC0, and L0 + DC0 = L +
DC hold simultaneously, where PU and PC are projections
onto the column space U of L and column support IC of C,
respectively. Given the data matrix M and the dictionary D,
we aim to recover {U , IC} from noisy observations via the
following optimization procedure, which we call Dictionary
based Outlier Pursuit (DOP),

min
L,C
‖L‖∗ + λ‖C‖1,2 s.t. ‖M− L−DC‖F ≤ εN, (2)

where ‖L‖∗ is the nuclear norm of L, ‖C‖1,2 =
∑
j ‖C:,j‖2,

C:,j is the j-th column of C, and λ ≥ 0 is a regularization
parameter. Note that we cannot guarantee recovery of the
true parameter pair (L,C) even when N = 0, since there
exists ambiguity that the outlier columns (non-zero columns
of DC) may contain “energy” of some inliers. Specifically,
PU⊥(DC) 6= 0 in general, where U⊥ is the orthogonal
complement of U in Rn1 and PU⊥ is the projection onto
U⊥. When PU⊥(DC) 6= 0 we can always find (L1,C1),
(L2,C2) ∈ {M,U , IC} with (L1,C1) 6= (L2,C2).

The main contribution of this paper is that we provide suf-
ficient conditions for the convex optimization (2) to enable the
recovery of the column space U of L, and the identities IC of
the outliers, even when rank(L) and k are large. Exact recov-
ery can be guaranteed when N = 0.

Background: A closely related model is studied in [3], which
estimates (U , IC) in the case D = I, using a convex formu-
lation termed Outlier Pursuit (OP). Simply multiplying the
(pseudo) inverse D† of D on both sides of (1) and apply OP
do not work here in general. For example, when the subspace
spanned by D do not contain U , such an operation results
in the column space of D†L ⊂ U , so we may not recover
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U . We may also not recover IC since nonzero columns of C
may be in U . In addition, the prior knowledge on D enables
enhanced performance of recovery, especially when rank(L)
is high. Another related model is studied in [14, 16], which
estimates (U , IC) of (1) with C being an entry-wise sparse
matrix. However, as indicated by our experiments, when the
outlier does have a column-wise structure, our estimator ob-
tained from (2) is more robust than the counterpart of entry-
wise sparse C for large k and r.

Notation. For a low rank matrix L, we denote L = UΣV>

as the compact singular value decomposition (SVD) of L,
where columns of U ∈ Rn1×r and V ∈ Rn2×r are left
and right singular vectors of L respectively, i.e., U>U =
V>V = Ir×r, and Σ ∈ Rr×r is a diagonal matrix with
Σii = σi being the i-th singular value of L, for i ∈ [r].
Given a matrix X, the projection operations are defined as
PU (X) = PUX and PV(X) = XPV, where PU = UU>

and PV = VV> are column and row projection matrices re-
spectively, PL(X) = (PU + PV − PUPV)(X) = PUX +
XPV − PUXPV, and PC(X) is obtained by keeping the
i-th column of X unchanged for i ∈ IC, otherwise setting
the i-th column of X to be zero for i /∈ IC. The com-
plement of the operations are defined correspondingly, i.e.,
PU⊥(X) = (I−PU)X, PV⊥(X) = X(I−PV), PL⊥(X) =
(I−PU)X(I−PV), and PC⊥(X) is obtained by keeping the
i-th column of X unchanged for i /∈ IC, otherwise setting the
i-th column of X to be zero for i ∈ IC.

2. PRELIMINARIES

We define several subspaces, similar to those in [14, 16]:
(s1) L = {X ∈ Rn1×n2 : X = UW>

1 + W2V
>, W1 ∈

Rn2×r, W2 ∈ Rn1×r}, the span of all matrices with
the same column or row space of L,

(s2) C =
{
H ∈ Rd×n2 for any d ∈ N : csupp(H) ⊆ IC

}
,

the matrices with column support contained in the col-
umn support of C and

(s3) D = {X ∈ Rn1×n2 : X = DH, H ∈ C}, all matrices
with the column space as a column subspace of D.

We denote (L, C,D) as the subspaces (s1) ∼ (s3).
In the following, we introduce some conditions on the

local identifiability used throughout our analysis. We first
define the subspace incoherence property between two sub-
spaces L and D to quantify the degree of their overlap. This
is formalized as follows.

Definition 2.1 (Subspace Incoherence Property). Two sub-
spaces L and D are said to satisfy the subspace incoherence
property with parameter µ(L,D) when

max
X∈D\{0}

‖PL(X)‖F
‖X‖F

≤ µ(L,D). (3)

Note that µ(L,D) ∈ [0, 1], where the upper bound is
achieved when PU⊥(DC:,j) = 0 for some j ∈ IC, and the

lower bound is achieved when L andD are orthogonal. In our
problem, we are interested in µ(L,D) < 1, which indicates
that PU⊥(DC:,j) > 0 for all j ∈ IC. This condition plays
an important role in guaranteeing the uniqueness of {U , IC}
given M and D.

Another important property is a criterion for the dictio-
nary matrix to preserve the Euclidean norm of any fixed vec-
tor in a certain space, which is formalized as follows.

Definition 2.2 (Restricted Frame Property). An n1×d matrix
D is said to satisfy the restricted frame property on x ∈ RC

if for any fixed x ∈ RC,
α`‖x‖22 ≤ ‖Dx‖22 ≤ αu‖x‖22, (4)

where αu and α` are upper and lower bounds respectively
with αu ≥ α` > 0.

The restricted frame property (RFP) is a fairly generic
property that is satisfied by many deterministic and random
matrices (e.g., with zero-mean Gaussian or subgaussian en-
tries). We do not restrict D to be overcomplete or to have
orthogonal rows as in [14], which allows for a much broader
choices of the dictionary. In fact, RC can be simply Rd
when n1 ≥ d, thus the frame property is easy to meet when
D is an undercomplete dictionary and better recovery per-
formance can be guaranteed, as shown in experiments. In
the case n1 < d, it is equivalent to the popular restricted
isometry property (RIP) [17,18] on sparse input, where given
ε ∈ (0, 1), we have that for sparse vectors x with ||x||0 ≤ k
for some k ≤ n1,

(1− ε)‖x‖22 ≤ ‖Dx‖22 ≤ (1 + ε)‖x‖22.
Generally, RFP holds for any vector in a subspace that has
small enough principal angles with the row space R(D) of
D, for which there exists a constant ε ∈ (0, 1] such that

min

{
arccos

(
|〈u,v〉|
‖u‖2‖v‖2

) ∣∣∣∣ u ∈ RC,v ∈ R(D)

}
≥ ε.

Note that α` > 0 in (4) indicates that for any H ∈
C\0d×n2

, DH 6= 0n1×n2
. This is another important result

for the optimality condition we will address later.
We also define several constants for convenience:

βV = ‖VV>‖∞,2, βU,V = ‖D>UV>‖∞,2,
where ‖A‖∞,2 = maxi ‖A:,i‖2. Small values of βU,V in-
dicates each column of L is spanned by “sufficiently many”
columns of D. In addition, βV is related to the notion of
column incoherence property (also called leverage score).
Specifically, let L ∈ Rn1×n2 be a rank r matrix with nL ≤ n2
non-zero columns. Given the compact SVD L = UΣV>, L
is said to satisfy the column incoherence property with pa-
rameter µV if ‖V>‖2∞,2 ≤ µV

r
nL

. Such quantities have been
identified as important for the identifiability of low rank com-
ponents in previous works [2, 3, 19]. Note that µV ∈ [1, nL

r ],
and a small µV indicates that the vectors comprising columns
of L are “spread out” among the basis vectors spanning the
column space of L, or equivalently, V does not contain sparse
rows. Consequently, we have β2

V ≤ µV
r
nL

.
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3. THEORETICAL GUARANTEES

We provide sufficient conditions for DOP (2) to guarantee ac-
curate recovery of the column space U of L and the identities
IC of non-zero columns of C. We will first provide the theory
and then the corresponding optimality conditions.

3.1. Recovery for DOP
The guarantees for the estimation of {U , IC} via DOP are
provided as the following theorem.

Theorem 3.1. Suppose M = L + DC + N with (L,C)
belonging to the oracle model {M,U , IC}, ‖N‖F ≤ εN,
rank(L) = r, and |IC| = k with k satisfying k ≤ 1

4β2
V

. Sup-
pose subspacesL andD satisfy (3) with parameter µ(L,D) ∈
[0, 1), D satisfies (4) on RC with αu ≥ α` > 0, and C:,j ∈
RC for all j ∈ [n2]. If λ, r and k satisfy

βU,V +
√
rkαuµ(L,D)b2

1
2 − kb2

≤ λ ≤
b1
2 −
√
rαuµ(L,D)
√
k

, (5)

where b1 and b2 are defined as

b1 =
√
α`(1− µ(L,D)), and b2 = max

‖u‖=1

‖(I−PU)Du‖2
‖Du‖2

αuβ
2
V

α`(1−µ(L,D))2
,

then there exists (L̃, C̃) ∈ {M,U , IC} such that the optimal
solution (L̂, Ĉ) of NDOP in (2) satisfies

‖L̂− L̃‖F ≤
(
8
√
r + 9

√
rαu

λ

)
εN,

‖Ĉ− C̃‖F ≤ 9
√
r
(
1 +

√
αu

λ

)
εN. (6)

We interpret the condition (5) for λ, r and k to have better
insights of the results. Denote a . b if a ≤ c · b for some
constant c and a ≈ b if a . b and b . a hold simultaneously.
Suppose 1 . α` ≤ αu . 1, which can be easily met by a tight
frame when n1 > d, or a RIP type condition when n1 < d.
Note that βV ≈ µVr

nL
. Then if µ(L,D) . 1

r and βU,V .
1
r (satisfied when DC and L has small coherence), we have
k = O( nL

r·µV
) and 1

k . λ . 1√
k

. This is of the same order
with the upper bound of k in OP [3], but our experiments in
Section 4.1 show that DOP outperforms OP even when the
rank of L is high. Note that when the noise N = 0, (6)
implies exact recovery.

3.2. Proof Sketch
The Lagrangian of the problem (2) can be written as

F(L,C,U) = ‖L‖∗ + λ‖C‖1,2 + 〈A,M− L−DC〉, (7)

where A ∈ Rn1×n2 is a dual variable. The subdifferentials of
(7) with respect to (L,C) are

∂LF(L,C,U) = {UV> + W −A : ‖W‖2 ≤ 1,PL(W) = 0},
∂CF(L,C,U) = {λH + λZ−D>A : PC(H) = H,

H:,j =
C:,j

‖C:,j‖2 ,PC(Z) = 0, ‖Z‖∞,2 ≤ 1}.

We claim that a pair (L,C) is an optimal point of (2) if and
only if the following hold by the optimality conditions:

0n1×n2
∈ ∂LF(L,C,U), 0d×n2

∈ ∂CF(L,C,U).

We then construct the dual certificate as follows. Let the
compact SVD of L be L = UΣV>, D̃ = (I−PV) ⊗
D> (I−PU), D̃C be the row submatrix of D̃ corresponding
to the non-zero rows of vec(C), Y = λC̃ − PC(D>UV>),
and YC be column submatrix of Y indexed by IC . If λ, r,
and k satisfy (5), then we construct the dual certificate Q̃ as

Q̃ = UV> + (I−PU) X̃ (I−PV) , (8)

where X̃ is given by vec(X̃) = D̃>C (D̃CD̃
>
C )−1vec(YC). The

following lemma states the optimality conditions for the opti-
mal solution pair (L,C), which proves Theorem 3.1.

Lemma 3.1. Suppose all conditions in Theorem 3.1 hold.
Then the construction of dual certificate Q̃ in (8) satisfies

(q̃1) PL(Q̃) = UV>, (q̃2) ‖PL⊥(Q̃)‖2 < 1
2 ,

(q̃3) PC(D>Q̃) = λC̃, where C̃:,j =
C:,j

‖C:,j‖2 for all j ∈
IC; 0 otherwise, (q4) ‖PC⊥(D>Q̃)‖∞,2 < λ

2 .

Moreover, if the noise satisfies ‖N‖F ≤ εN, then there exists
(L̃, C̃) ∈ {M,U , IC} such that the optimal solution (L̂, Ĉ)
of DOP satisfies (6).

4. NUMERICAL EVALUATION

We provide numerical experiments to study the properties of
DOP. We accomplish this by first studying the phase transi-
tion in terms of rank and sparsity in Section 4.1, followed
by exploration of an application of the proposed approach for
target detection in hyper-spectral images in Section 4.2. The
competing methods are OP proposed by [3] and a naive proce-
dure multiplying the pseudo inverse of D on both sides of (1)
then applying OP, called Inv+OP when the dictinary is thin.
Note that DOP and Inv+OP can be considered as a type of su-
pervised learning method [20]. However, different from most
supervised learning methods that need to train implicit model
parameters, such as the support vector machines (SVMs) [21],
we can detect outliers directly from a given data, i.e., the ba-
sis for outliers or a dictionary formed from outliers. Any dic-
tionary learning method or clustering method can be used to
form the dictionary. We also test on the popular matched fil-
ter [22], which performs uniformly worse than DOP, thus we
omit its result here.

4.1. Phase Transition
For ease of exploration, we only discuss the noiseless case,
i.e., N = 0. We demonstrate the phase transition with respect
to the rank r and the number of outliers k, comparing DOP
with OP by setting M = L + C and Inv-OP. Specifically,
for DOP, we set n1 = 100, n2 = 1000, d = 50 or 150, and
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Fig. 1. Phase transitions for (a) OP, (b) Inv+OP, and DOP with (c)
d = 50; (d) d = 150.

choose r ∈ {5, 10, . . . , 100} and k ∈ {50, 100, . . . , 1000}
with λ = 0.5 for d = 50 and λ = 1.5 for d = 150. For each
pair of r and k, we generate L = [UV>0n1×k] ∈ Rn1×n2 ,
C = [0d×(n2−k)W] ∈ Rd×n2 , where U ∈ Rn1×r, V ∈
R(n2−k)×r and W ∈ Rd×k has i.i.d. N (0, 1) entries. We
also generate D ∈ Rn1×d with i.i.d. N (0, 1) entries, set M =
L + DC, and normalized it by column. For OP, we generate
L ∈ Rn1×n2 and C ∈ Rn1×n2 in the same way except that
C = DW with d = 50 such that columns of C spans a 50-
dimensional subspace of R100.

We demonstrate the average performace over 50 random
trials for each of the methods considered in Figure 1. Here,
we deem an experiment to be a success (shown in white) if
it identifies outlier and inlier locations correctly. We observe
that for DOP, even when L has full row rank, we can recover
{U , IC} exactly for a wide range of k. This coincides with
both our theory and intuition that the prior knowledge on D
allows for the recovery of wider range of r and k when the
problem is properly defined. On the other hand, with OP, the
recovery of {U , IC} fails when the rank r is high, even for
very small k. This matches with the bound that k = O( n2

r·µV
).

For Inv+OP, it can also recover IC for a range of k when
L has full row rank in this setting. However, when D does
not contain U , i.e., ‖PD(L)‖F < ‖L‖F, Inv+OP will lose
information of U . In the extreme case, PD(L) = 0 if D ⊥ U .

4.2. Target Detection in Hyper-Spectral Imaging Data
We investigate the applicability of our approach for a target
detection application in hyper-spectral (HS) imaging. A HS
sensor records the response of a scene to different regions of
the electromagnetic spectrum. Therefore, the resulting HS
image, Y ∈ Rs×m×w can be viewed as a data cube i.e., a
tensor, where each length w voxel corresponds to the spectral
response of associated pixel. The aim here is to identify tar-
gets in an HS image given the spectral signatures of the targets
of interest. Target detection in hyper-spectral images was the
topic of one of our previous works [23], where we consider
the case of entry-wise sparsity. Here, we analyze the per-
formance of DOP for this application. For our experiments,
we consider 2 datasets: (i) Indian Pines collected by AVIRIS
sensor [24] with s = m = 145 and w = 200; and (ii) Pavia
University collected by ROSIS sensor 1 with s = m = 131

1Data is available at http://www.ehu.eus/ccwintco/

(a) (b) GT (c) OP (d) Inv+OP (e) DOP

(f) (g) GT (h) OP (i) Inv+OP (j) DOP

Fig. 2. Demonstration of (a) a slice of Indian Pines HS data array
(with w = 50) and (f) a slice of Pavia University HS data array (with
w = 100). We also show (b, g) the ground truth, (c, h) detection
results of OP, (d, i) Inv + OP, and (e, j) DOP for Indian Pines and
Pavia University.

Table 1. Comparison of the ROC metrics for different methods.

Approach
d = 4 d = 15

TPR FPR AUC TPR FPR AUC
DOP 0.989 0.012 0.998 0.989 0.017 0.998

Inv + OP 0.926 0.033 0.980 0.903 0.005 0.946
OP 0.097 0.024 0.095 0.097 0.024 0.095

and w = 201.
The data matrix M ∈ Rw×sm is formed by unfolding the

tensor data Y along the third dimension, where each column
of M is the voxel of Y . For our experiments, we form the
dictionary D in two ways – by randomly choosing some vox-
els from the class of interest, and by learning a dictionary on
the class of interest [25] (we skip the description here), which
performs better in our experiments.

We demonstrate the results of different approaches,
namely DOP, OP, and Inv+OP in Figure 2. The light color
here corresponds to the detected targets. For all approaches,
we provide the detection result with optimal “visual” detec-
tion results compared with ground truth. The corresponding
detailed results are shown in Table 1. Here, we report the
performance in terms of the ROC metrics, i.e., true positive
rate (TPR), false positive rate (FPR), and area under curve
(AUC) for each approach for two types of dictionaries – when
dictionary is learned (d=4), and when the dictionary is formed
from the data voxels directly (d=15). The results show that
the proposed method performs better than Inv+OP and OP.

5. DISCUSSION

Further improvement in terms of the sampling and compu-
tational efficiency can be achieved via adaptive sensing and
sketching [26, 27]. For example, a two-step procedure [28]
can be applied to reduce both numbers of the rows and
columns in the optimization phase for further speedup. We
will leave this investigation to a future effort.
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