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Abstract

Learning effective embeddings for potentially irregularly sam-
pled time-series, evolving at different times scales, is funda-
mental for machine learning tasks such as classification and
clustering. Task-dependent embeddings rely on similarities
between data samples to learn effective geometries. However,
many popular time-series similarity measures are not valid dis-
tance metrics, and as a result they do not reliably capture the
intricate relationships between the multi-variate time-series
data samples for learning effective embeddings. One of the
primary ways to formulate an accurate distance metric is by
forming distance estimates via Monte-Carlo-based expectation
evaluations. However, the high-dimensionality of the under-
lying distribution, and the inability to sample from it, pose
significant challenges. To this end, we develop an Importance
Sampling based distance metric – I-SEA – which enjoys the
properties of a metric while consistently achieving superior
performance for machine learning tasks such as classification
and representation learning. I-SEA leverages Importance Sam-
pling and Non-parametric Density Estimation to adaptively
estimate distances, enabling implicit estimation from the un-
derlying high-dimensional distribution, resulting in improved
accuracy and reduced variance. We theoretically establish the
properties of I-SEA and demonstrate its capabilities via exper-
imental evaluations on real-world healthcare datasets.

1 Introduction
Learning to embed time-series is at the heart of a number
of machine learning tasks such as classification (Hayashi,
Mizuhara, and Suematsu 2005), clustering (Ma et al. 2019),
forecasting (Murray 1993), recommendation, search and re-
trieval (McFee, Barrington, and Lanckriet 2012; Oord, Diele-
man, and Schrauwen 2013). Further, representations which
encode the geometry of the data are also fundamental for
other data mining and information retrieval tasks with appli-
cations in healthcare (Yang and Shahabi 2004; Xiong and
Chen 2006; Saigo, Vert, and Akutsu 2006; Yassine, Singh,
and Alamri 2017), music retrieval (McFee, Barrington, and
Lanckriet 2012; Oord, Dieleman, and Schrauwen 2013),
speech processing (Sakoe and Chiba 1978; Myers, Rabiner,
and Rosenberg 1980; Chorowski et al. 2015), human activity
understanding (Tran and Sorokin 2008; Jiang, Jr, and Gonza-
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lez 2012), meteorology and climate (Lhermitte et al. 2011;
Baranowski et al. 2015).

Measuring distances between data samples is key for faith-
fully encoding the geometries for embedding. To this end,
time-series are compared based on their similarity under a
certain monotonic and non-decreasing arrangement, or align-

ment (Sakoe and Chiba 1978). Notwithstanding their success,
popular methods rely on an optimal alignment, which pre-
vents them from constituting a valid distance metric (Müller
2007; Mei et al. 2015; Cuturi and Blondel 2017), an essential
property for reliably capturing the geometry via pair-wise
distances (Cover and Hart 1967; Cox and Cox 2008).

Moreover, time-series metric learning, which learns su-
pervised task-dependent embeddings via linear or non-linear
(deep learning-based) transformations to capture complex
temporal relationships among the features in multi-variate
time-series (Xing et al. 2002; Salakhutdinov and Hinton 2007;
Weinberger and Saul 2009; Hoffer and Ailon 2015), also crit-
ically relies on effective pair-wise distance comparisons to
learn embeddings such that the distances in the transformed
space reflect the nearest neighbor properties imposed by the
supervision (Shalev-Shwartz, Singer, and Ng 2004). However,
since popular ways to compare time-series do not constitute
a distance metric, the learned representations or embeddings
based on such measures also do not encode the complex re-
lationships between the data samples (Cover and Hart 1967;
Cox and Cox 2008). This situation is further exacerbated by ir-
regular sampling, missing entries and other non-idealities. As
a result, developing reliable distance metrics for time-series
remains a challenging problem.

One way to form a valid distance metric is by averaging
distances over all possible alignment paths (Cuturi et al. 2007;
Che et al. 2017). However, these averages (Expected Align-

ments) are difficult to compute accurately since the computa-
tions involve expectation evaluations w.r.t a high-dimensional
distribution over all alignment paths. This problem is further
compounded by a) the inability to sample from this distri-
bution due to the combinatorial nature of the problem (even
when known), and b) the distribution being over rare events
(since good alignments are rare).

To address these challenges, we propose I-SEA: Impor-
tance Sampling and Expected Alignment-based distance
metric for comparing time-series, which leverages a) deep
learning-based representations to capture complex temporal



feature dependencies, and b) Non-parametric Density Es-
timation and Weighted Importance Sampling for accurate
distance estimation, to learn effective embeddings of multi-
variate time-series. Our specific contributions are as follows:

• Importance Sampling-based data-driven distance met-
ric for time-series. We develop a deep learning and Im-
portance Sampling-based distance metric which learns a
task-dependent metric using a large margin-based triplet
loss metric learning approach. We establish the theoreti-
cal properties of I-SEA, showing that it is a valid distance
metric for comparing time-series.

• Improved distance estimation via Importance Sam-
pling. Adopting a rare event distribution view of the
similarity distribution over alignment paths, we develop
a Weighted Importance Sampling-based approach, which
utilizes Adaptive Non-parametric Density Estimation and
Rejection Sampling to enable implicit estimation from
an inherently high-dimensional distribution. The result-
ing metrics are accurate and exhibit reduced variance
properties across different datasets.

• Learning faithful embeddings. Our neural network-
based representations and distance estimation effectively
encode the relationships between time-series. Further-
more, our estimation procedure shows low variance,
while conventional Importance Sampling estimators are
known to result in high variance if the distribution over
desired region has a small support (Precup 2000).

A key contribution of our work is to enable accurate dis-
tance computations by implicit estimation from a distribution
over all alignment paths using Importance Sampling. The
primary challenge here, in addition to the high-dimension
of the distribution, is that as opposed to conventional Im-
portance Sampling, sampling over time-series involves two
distributions – one over the alignment path lengths, and other
over all alignment paths of a specific length. Although both
are a priori unknown, our main result leverages the funda-
mental differences between these two to develop Importance
Sampling-based metrics for time-series. As a result, our con-
tributions here provide, to the best of our knowledge, the first
work to tackle and leverage these high-dimensional distribu-
tions to develop a metric for time-series, and the techniques
developed here can be of independent interest.

1.1 Related Works
Comparing Time-series. Classical similarity measures
such as dynamic time warping (DTW) (Müller 2007) and
multiple sequence alignment (MSA) (Hogeweg and Hes-
per 1984), rely on an alignment step before comparing
the time-series, independent of the data. Global Alignment
Kernel-based (GAK) methods also belong to this class al-
beit leverage the kernel-trick to compute alignment over all
paths to develop a metric (Cuturi et al. 2007; Cuturi 2011).
Application-specific measures are a popular way to compare
time-series (Qiu et al. 2019), but these often do not consti-
tute a metric. On the other hand, recent optimal transport-
based metrics do not consider the sequence order (Huang
et al. 2016). To mitigate this, Su and Hua (2018); Su and
Wu (2019) develop a locally order-preserving variant of the

Wasserstein metric. However, these works do not consider
the intra-sequence relationships nor show if they constitute a
valid metric; see also Shanmugam (2018).
Deep Metric Learning. Task-dependent metrics learn an
embedding by transforming the data either linearly or non-
linearly (Xing et al. 2002). These rely on alignment com-
putations on the transformed data to develop a similarity
measure. Since linear transformation-based methods (La-
jugie et al. 2014; Mei et al. 2015) fail to capture the com-
plex dependencies across features in multivariate time-series
metric learning, deep learning-based metric learning has
gained popularity (Hoffer and Ailon 2015), leading to gra-
dient training amenable loss function for end-to-end train-
ing (Cuturi and Blondel 2017), and alignment-independent
techniques (Mueller and Thyagarajan 2016). As a result, met-
ric learning inherently relies on faithfully computing pair-
wise distances to learn an embedding (Weinberger and Saul
2009). To this end, valid distance metrics (which follow non-

negativity, symmetry, and triangle inequality) are critical
for learning effective embeddings since they can encode the
relative geometry (Shalev-Shwartz, Singer, and Ng 2004).
For this, recent methods average distances over all possible
alignment paths (Expected Alignment) to form a valid dis-
tance metric (Che et al. 2017), treating all alignment paths
as equals, while favorable alignments are rare. Instead, we
leverage Weighted Importance Sampling and Non-parametric
density estimation to weigh alignment paths according to
their favorability to develop valid distance metrics for time
series.
Importance Sampling and Rare Event Distributions. Im-
portance sampling is a Monte-Carlo variance reduction
method, also used to estimate expectations w.r.t. a distribution
while drawing samples from a different one (Precup 2000;
Rubinstein and Kroese 2016). Since choosing a sampling
distribution is critical for controlling the estimation error
(specifically for rare event distributions), adaptive strategies
leverage Monte-Carlo sampling to simultaneously estimate
the sampling distribution and the target expectation for both
parametric (Karamchandani, Bjerager, and Cornell 1989) and
non-parametric (Zhang 1996) densities; see also Glynn and
Iglehart (1989).

2 I-SEA: Methodology
I-SEA has two main components to address the two key
challenges to develop a valid metric for multi-variate time-
series: a) accurate distance computation between time-series,
and b) capturing complex feature dependence structure using
data-driven representations. We now detail each of these,
with our overall metric learning-based architecture shown in
Fig. 1 and notations summarized below1.

1Notation: We denote vectors and matrices by bold lower x
and capital X case letters, respectively. E[·] denotes the expectation
operator. k·k denotes the 2-norm. U{·} denotes the discrete uniform
distribution. Let X 2 Rn⇥TX be a multi-variate time-series where
n denotes the number of variates and TX denotes the number of time
steps. For a time-series X, X↵↵↵U 2 Rn⇥U denotes the arrangement
of columns of X according to indices of an integer-valued vector
↵↵↵U 2 RU (which can have repeated entries). We use X↵↵↵U (t) 2 Rn



Figure 1: I-SEA: Importance Sampling and Expected Alignment-based Deep Metric Learning. We adopt a Triplet Loss-based
large margin approach to train the neural network. We accomplish distance computations via Importance Sampling-based
Expected Alignment for the training loss, resulting in an effective metric learning framework for time-series.

2.1 Distance computations via Importance
Sampling and Expected Alignment

Time-series evolving at different time scales are compared
via a process called alignment (Sakoe and Chiba 1978).
Alignment finds correspondences between two time-series
by selecting the entries of one w.r.t. another in a monoton-
ically non-decreasing fashion. Formally, an alignment path
AU := (↵↵↵U , ���U ) for multi-variate time-series X 2 Rn⇥TX

and Y 2 Rn⇥TY is defined as follows.
Definition 2.1. An alignment path AU between two time-

series is defined as a pair of monotonically non-decreasing

sequences (↵↵↵U ,���U ), where ↵↵↵U ,���U 2 RU
.

Here, the sequences ↵↵↵U and ���U denote the indices chosen
from the time-series X and Y, respectively. With this, the
distance over an alignment path between two multi-variate
time-series X 2 Rn⇥TX and Y 2 Rn⇥TY for an alignment
path AU := (↵↵↵U , ���U ) of length U is formalized as follows.
Definition 2.2. For a distance metric d(·), the distance

D
(X,Y)
AU

between multivariate time-series X 2 Rn⇥TX and

Y 2 Rn⇥TY under the alignment path AU is defined as

D
(X,Y)
AU

= D
(X,Y)
↵↵↵U ,���U

:=
PU

t=1 d(X↵↵↵U(t),Y���U(t)). (1)

Here, we use the distance metric d(·) (say Euclidean dis-
tance) to compute the local distance between vectors X↵↵↵U(t)
and Y���U(t) in Rn for a given alignment path AU .
Expectation w.r.t a High-dimensional Distribution.
Equipped with a metric over an alignment path, averaging
across distances over alignment paths (Expected Alignment)
leads to a valid distance metric (Cuturi et al. 2007; Cuturi
2011; Che et al. 2017), as opposed to that over a single
path (Sakoe and Chiba 1978). Our crucial observation is that
a naive averaging by considering all alignment paths to be
of equal importance may not be accurate. In other words,
two time-series may have higher similarity only along a few
alignment paths, i.e. they may be rare. As a result, a naive
averaging may lead to inaccurate estimates by being agnostic
to the underlying similarity structure, as shown in Fig. 2(a).

for t-th column of X↵↵↵U . For a set of samples S , we use S+
i to denote

the set of all in-class samples, and S�
i to denote all out-of-class

samples w.r.t i. We use Tr(·) to denote the trace operator and k · kF
for the Frobenius norm.

(a) (b)

Figure 2: Sampling Alignment Paths. Panel (a) and (b) show
path-agnostic, and Importance Sampling-based Expected
Alignment (I-SEA), respectively. Here, I-SEA leverages simi-
larity between sampled paths for an accurate distance metric.

Importance Sampling. Formally, let p(·) denote the dis-
tribution over all alignment paths AU of length U , where
the distribution has higher weight for better alignment paths,
shown in Fig. 2(b). It would indeed be ideal if we could
sample from a distribution p(·) which reflects the similarity
structure (or distances) over the alignment paths between the
time-series. However, since these alignment paths and the
corresponding distances are unknown a priori, (and p(·) is
unknown, in general) we cannot sample directly from p(·).
We can, however, sample uniformly over all alignment paths,
say a distribution q(·), and assess the goodness of a path
AU after observing it, and use these scores to adjust the dis-
tance estimate. To this end, we leverage Importance Sampling
(Precup 2000; Rubinstein and Kroese 2016) to evaluate the
expectation w.r.t. p(·), while drawing samples using q(·).
Significance. I-SEA can leverage any type of Importance
Sampling approach depending upon the application. We here
present a Weighted Importance Sampling and adaptive Non-
parametric Density Estimation-based approach specifically
suited for the case when favorable alignments are rare. Our
analysis can be of independent interest for Importance Sam-
pling for time-series data. In our discussion, we use cosine
similarity-based scores s(AU ) 2 [0, 1] to assess an alignment
path (shown below).

s(AU ) :=
(1+cos ✓)

2 , where cos ✓ =
Tr(Y>

���U
X↵↵↵U

)

kX↵↵↵U
kFkY���U

kF
. (2)

Cosine-similarity is a popular choice for computing pair-
wise similarity between matrices. It is independent of the



length of the time series since it focuses on the angle between
two vectors (Schütze, Manning, and Raghavan 2008). Based
on the time-series, other choices may include linear, polyno-
mial, sigmoid (and soft-max), Radial Basis Function (RBF),
and Laplacian scoring functions (Zhang et al. 2007).
Non-parametric Density Estimation and Weighted Im-
portance Sampling. The primary challenge here is the
high-dimensionality of p(·), which is a distribution over all
alignment paths between two multi-variate time-series. There
are two sources of randomness here: the choice over a) the
alignment path lengths U , and b) all alignment paths of length
U , denoted by AU . To this end, we leverage Non-parametric
Adaptive Kernel Density Estimation to estimate the distri-
bution over alignment lengths U ⇠ f(U), and Weighted
Importance Sampling strategy for the distribution over align-
ment paths. Overall, the I-SEA DI-SEA is defined as follows.
Definition 2.3. For alignment path length U ⇠ f(U) sup-

ported on {Ul, Uh}, and a corresponding alignment path

AU ⇠ p(AU ), for a distribution p(·) over alignment paths

AU of length U , the Importance Sampling and Expected

Alignment-based distance metric, DI-SEA is defined as

DI-SEA(X,Y) := EU

h
EAU

h
D

(X,Y)
AU

ii

=
P

U2{Ul,Uh} f(U)
P

AU2AU
D

(X,Y)
AU

p(AU ), (3)

where D
(X,Y)
AU

denotes the distance between X and Y under

the alignment path AU (Def. 2.2).

Next, Thm. 1 establishes the validity of DI-SEA as a dis-
tance metric, as follows (proof in Supp. A.1).
Theorem 1. For a distance metric d(x,y) for x,y 2 Rn

, the

distance DI-SEA(X,Y) between two multi-variate time-series

X 2 Rn⇥TX and Y 2 Rn⇥TY defined in Eq. (3) is a valid

distance metric. Namely, it satisfies the following:

1. Non-negativity: DI-SEA(X,Y) � 0,

2. Symmetry: DI-SEA(X,Y) = DI-SEA(Y,X), and

3. Triangle Inequality: DI-SEA(X,Z)  DI-SEA(X,Y) +
DI-SEA(Y,Z).

Estimating I-SEA. Alg. 1 details the overall Importance
Sampling-based procedure to form I-SEA for given time-
series X and Y. Although I-SEA yields a valid metric as per
Thm. 1, the distributions f(·) and p(·) are both unknown a

priori. Our key observation is that there is a difference be-
tween the properties of these two distributions. Since f(·) is
a distribution over alignment lengths, it is a one-dimensional
distribution and if it were indeed known, we can sample
from it using Monte Carlo sampling techniques. However,
since p(·) is a distribution over all alignment paths of a given
length, it is potentially a very high-dimensional distribution,
and even if it were known, we may not be able to sample
from it directly. We leverage this difference to decouple these
distributions to formulate our estimator as discussed below.
Non-parametric Adaptive Density Estimation for f(·). .
We pose f(·) estimation as a Non-parametric Density Estima-
tion problem, that we accomplish via weighted Kernel Den-
sity Estimation (KDE) by adaptively improving the estimate
using p(·) as weights for each path with kernel (·) (Zhang

Algorithm 1: Distance Computation for I-SEA
Input: Time-series X 2 Rn⇥TX , Y 2 Rn⇥TY , parame-

ters Ul, Uh, k,m, Kernel (·) with KDE bandwidth
h, evaluated using Silverman (2018).

Initialize: f̂0(·) = U ⇠ U{Ul, Uh}, q(·) = 1
m 8i 2 [m]

(uniformly distributed).
Output: I-SEA distance D̂

weighted
I-SEA between X and Y.

for k = 0, 1, 2, . . . do
1: Sample m alignment path lengths {Ui}mi=1 from f̂k(·)
using Rejection Sampling.
2: For each path length {Ui}mi=1, sample corresponding
alignment paths {A}mi=1 using q(·).
3: For each alignment path {A}mi=1, calculate score us-
ing s(·) in Eq. (2), and set p(Ai) =

s(Ai)Pm
j=1 s(Aj)

.
4: Compute the Weighted Importance Sampling-based
estimator (D(X,Y)

Ai
as per Def. 2.2):

D̂
weighted
I-SEA :=

1
Pm

i=1
p(Ai)
q(Ai)

mX

i=1

D
(X,Y)
Ai

p(Ai)
q(Ai)

. (4)

5: For each u 2 {Ul, Uh}, update f̂k+1(·) using
Weighted KDE from samples {Ui}mi=1 with {p(Ai)}mi=1

as weights by f̂k+1(u) =
1

m·h
P

i p(Ai)
�
Ui�u

h

�
.

end for

1996). The number of adaptive steps k to update f(·) can
be chosen based on the computation budget. To sample path
length U using the KDE estimate f̂k(·) of f(·), we use Re-
jection Sampling (Shapiro 2003) at each step.
Weighted Importance Sampling for p(·). We leverage Im-
portance Sampling2 that allows us to sample the alignment
paths Ai according to a distribution q(Ai) to form an Impor-
tance Sampling estimator D̂I-SEA of DI-SEA w.r.t the target
distribution p(·) using the estimator

D̂I-SEA :=
1

m

mP
i=1

D
(X,Y)
Ai

p(Ai)
q(Ai)

. (5)

This importance-based weighting is effective in forming an
estimate where the important region is relatively small (Pre-
cup 2000). For q(·), we utilize an algorithm for uniformly
sampling over the alignment paths presented in Alg. B.1 in
Supp. B. In general, q(·) can be any tractable distribution. The
estimate D̂I-SEA is indeed an unbiased estimator of DI-SEA as
established by the following lemma (proof in Supp. A.2).
Lemma 2. If the alignment paths are sampled as per a

distribution q(·), then for U ⇠ f(U) supported on {Ul, Uh},

and AU ⇠ q(AU ), DI-SEA can be estimated as

DI-SEA(X,Y) = EU

h
EAU

h
D

(X,Y)
AU

p(AU )
q(AU )

ii
. (6)

To mitigate the case where we only sample bad alignment
paths, the following result establishes the number of samples

2In practice, the Weighted Importance Sampling estimator shown
in Eq. (4) is used for its superior stability properties (Precup 2000).
Theoretical properties follow directly.
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Figure 3: K-Nearest Neighbor Classification Performance. Panels (a) – (c) and (d) – (f) show the performance of I-SEA as
compared to competing methods in terms of mean Misclassification (1� Accuracy) and distribution of standard deviation
across K (violin plots), respectively. I-SEA consistently performs better both in terms of accuracy and lower variance. The colors
in the legend also correspond to the violin plot, with I-SEA (WIS-KDE) denoted by gray. (Best viewed in color.)

required to faithfully assess the distance, by establishing that
the empirical estimate D̂I-SEA indeed concentrates around its
mean DI-SEA (proof in Supp. A.3).
Lemma 3. For any multi-variate time-series X 2 Rn⇥TX

and Y 2 Rn⇥TY , where the local distance d(·) between the

time-series under any alignment path AU := (↵↵↵U , ���U ) is

bounded by 1, i.e.,

d(X↵↵↵U (t),Y���U (t))  1 8t 2 {1, . . . , U},

given m = ⌦
⇣

U2
h

✏3

⌘
samples, the empirical Importance

Sampling-based Expected Alignment distance (I-SEA) D̂I-SEA

concentrates around its mean with probability 1��, for small

constants � and ✏, i.e.,

P
h
|D̂I-SEA �DI-SEA|  ✏

i
� 1� �.

Time Complexity. For time-series of average length T ,
and Uh = O(T ), I-SEA requires ⌦(T 2) samples (say c1T

2)
from Lem. 3, for some c1 > 0. Let the distance computa-
tions for each path take O(T ) time. Then the overall time
complexity is O(T 3), which is similar to Che et al. (2017),
and the constant number of KDE steps do not change the
overall order. Note that the dependence on the length is a
natural consequence of using concentration results used to
establish sufficient conditions for the success of the estima-
tion with high probability. As such, sampling based methods
will encounter a similar dependence. Nevertheless in practice,
we observe that the procedure succeeds with lower number
of samples, the complexity can be controlled by restricting
range of U , which still results in a valid distance metric.

2.2 Deep Metric Learning
I-SEA leverages neural network to transform the multi-
variate time-series before utilizing the Importance Sampling-
based distance computations (described in the previous sec-
tion). To accomplish this, we train a neural network to learn
an appropriate non-linear transformation for effectively em-
bedding of the multi-variate time-series data. To this end,

we adopt a triplet loss-based large margin approach (Wein-
berger and Saul 2009) for this exposition. Note that I-SEA
can be trained with other deep metric learning loss func-
tions; see Kaya and Ş. Bilge (2019). These loss functions
rely on computing pair-wise distances to learn an embed-
ding that captures the relationship between data samples
effectively (Weinberger and Saul 2009). Since the triangle
inequality holds for distance metrics, training via the metric
learning loss learns an effective transformation, capturing
the relative geometry (Cover and Hart 1967; Shalev-Shwartz,
Singer, and Ng 2004; Cox and Cox 2008; Weinberger and
Saul 2009).

Specifically, the large margin approach aims to learn an
embedding of the time-series data samples, by bringing a data
sample X(i) closer to its in-class targets (in the embedding
space), while pushing away from the out-of-class imposters

(using the triplet loss) (Weinberger and Saul 2009; Che et al.
2017). Formally, given N samples {X(i)}Ni=1from C classes,
the targets S+

i , and the imposters S�
i for the i-th data sample,

we minimize the following objective by the choice of I-SEA’s
neural-network parameters in DI-SEA(·),
min
D

P
i2[N ],j2S+

i
D

(i,j)

+ �
P

i2[N ],j2S+
i ,k2S�

i
max{� +D

(i,j) �D
(i,k)

, 0},
(7)

where D
(i,j) := D(eX(i)

, eX(j)) is the distance metric and X̃
denotes a non-linear transformation of X learned via a neural
network fNN (·), i.e., eX = fNN (X). Here, � and � control
the separation between classes (margin).

3 Experimental Evaluation
We evaluate and compare the performance of I-SEA for met-
ric learning tasks arising in two real-world healthcare time-
series datasets which suffer from one of more of the following
non-idealities such as missing data, irregular sampling, and
a large feature set. We now describe the experiments; see
Supp. C for raw data embeddings (Fig. C.1), details of the
set-up, additional results, and baselines descriptions. The
code is available at https://github.com/srambhatla/ISEA.



(a) I-SEA (WIS-KDE) (b) I-SEA (WIS-Unif) (c) Decade (d) Soft-DTW (e) MDTW-NN

(f) Ma-NN (g) MDTW (h) GAK (i) MSA (j) LDMLT

Figure 4: Embedding data in UCI-EEG (32) based on pair-wise distances/similarities using Multidimensional Scaling (MDS) (Cox
and Cox 2008). Panels (a)-(f) show the neural network-based techniques, and panels (g)-(j) show the data-independent methods.
Panel (j) shows the LDMLT-based embedding which uses data-dependent linear transformations only. (Best viewed in color).

3.1 Datasets
The UCI EEG Dataset. The UCI EEG dataset3 consists of
600 traces collected from equal number of test subjects from
alcoholics (class 0) and non-alcoholic (class 1) groups (binary
classification) using 64 electrodes (sensors). Each trace is of
1 second duration sampled at 256Hz. For our experiments,
we downsample these traces (by 8 and 4) resulting in data
samples of length 32 “UCI-EEG (32)” and 64 “UCI-EEG
(64)”, respectively, with a feature-set of 64 variables.
The PhysioNet Dataset. The PhysioNet dataset (Gold-
berger et al. 2000) consists of in-hospital Intensive Care Unit
(ICU) patient medical data recorded over the first 48 hours
of their stay, and the eventual mortality outcome (0 or 1). We
randomly sample 1108 traces to form a balanced dataset con-
taining observations from 37 variables observed irregularly
over the 48 hour period with missing entries (73%/sample),
aggregating the observations for each hour4. The resulting
samples are of length 48 with a feature-set of 37 variables.

3.2 Variants and Baselines
We evaluate the performance of I-SEA with popular
task-dependent and independent baselines for time series
analysis. We present two variants of I-SEA in the experi-
ments to study the contribution of a) Weighted Importance
Sampling (WIS) and b) Gaussian Kernel-based ((·)) KDE
for estimating f(·). Here, the first variant “I-SEA (WIS-Unif)”
incorporates WIS only (i.e., f(·) is set to be Uniform distribu-
tion) and is used to analyze performance with respect to Che
et al. (2017) that does not use WIS; The second variant “I-
SEA (WIS-KDE)” incorporates both WIS and KDE. We em-
ploy Euclidean distance for d(·), and fix the hyper-parameters
across all experiments; see Supp. C. We use data indepen-
dent measure such as Multi-variate DTW (MDTW), Multiple
Sequence Alignment (MSA) (Hogeweg and Hesper 1984),
Global Alignment Kernel (GAK) (Cuturi 2011; Cuturi et al.

3The UCI-EEG dataset is available at http://archive.ics.uci.edu/
ml/datasets/EEG+Database.

4I-SEA can also handle irregularity in time-series by restricting
the set of time-steps available while forming the alignment paths.

2007), and task-dependent measures such as Decade (Che
et al. 2017), neural network-based Soft-DTW (Cuturi and
Blondel 2017), neural network-based MDTW (MDTW-NN),
Manhattan Neural Network (Ma-NN) (Mueller and Thya-
garajan 2016) and LDMLT (LogDet divergence based Metric
Learning with Triplets) (Mei et al. 2015). Of these, Decade
(when Euclidean distances are used to compute local dis-
tances), Ma-NN, MSA, and GAK constitute a metric. For
task-dependent baselines, we use the large margin metric
learning loss shown in Eq. (7). For the neural network-based
baselines, we use a two-layer feed-forward model with sig-
moid activations to capture complex feature dependence with
the same input and output dimensions.

3.3 Evaluation Metrics
We use the K-Nearest Neighbor Mean Accuracy over the test
sets corresponding to the 5 folds and its standard deviation
to evaluate the embeddings learned using the techniques.
Here, we evaluate the performance of the techniques for
various values of K, i.e. K 2 {1, 3, . . . 19}. In addition,
we evaluate the learned visualizations both qualitatively and
quantitatively, via Multidimensional Scaling (MDS)-based
2-D projections (training) since MDS can handle metrics and
non-metrics, and in terms of triplet loss – percent violation of
triangle inequality over triplets (20k random triplets each for
train and test set), respectively, using the learned distances.

3.4 Results
K-Nearest Neighbor Performance. We compare the per-
formance of I-SEA with the baselines detailed in Supp. C.1
based on their K-Nearest Neighbor (K-NN) classification
accuracy for metric learning tasks for the real-world datasets.
Panels (a), (b), and (c) in Fig. 3 show the K-NN Misclassi-
fication (1� Accuracy) performance of the baselines as
compared to I-SEA for UCI-EEG (32 and 64), and the Phys-
ioNet dataset respectively; see Supp. C.2 for detailed results.
We also show the corresponding distribution of standard de-
viation across Ks in the violin plots in panels (d), (e), and
(f) of Fig. 3, respectively. We observe that across datasets,
I-SEA variants perform better across different choices of K,



Performance on the UCI-EEG Dataset (32) Performance on the UCI-EEG Dataset (64) Performance on the PhysioNet Dataset

(a) (b) (c)

Figure 5: Percent Triplet Violations from Learned Embeddings. Panel (a), (b), and (c) show the triplet violations across different
methods for UCI-EEG (32), UCI-EEG (64) and the PhysioNet dataset, respectively. Valid distance metrics score better.

while also exhibiting the best variance properties, i.e., both
low and consistent. This is because Importance Sampling at
its core is a variance reduction method and leads to supe-
rior variance properties across datasets. This underscores the
benefit of Importance Sampling for computing the Expected
Alignment. These also point to learned embedding proper-
ties. Specifically, even as the number of neighbors grow, the
K-NN performance for I-SEA is stable, indicating that the
learned metric faithfully separates the in-class and out-of-
class examples. This can also be observed to some extent in
Decade and Ma-NN, highlighting the importance of a valid
metric for time-series deep metric learning.

Analyzing the Learned Embeddings. In Fig. 4, we visual-
ize the learned distances by I-SEA and the baselines using
the 2-dimensional MDS embedding based on the pair-wise
training set distances (over the last training fold)for the UCI-
EEG (32); see Supp. C (Figs. C.2 and C.3) for other datasets.
Complementary to these results, we show the percent triplet
violations (violations of triangle inequality by data triplets)
by each method over train and test sets for these (for the same
fold) in Fig. 5. The embeddings are revealing in terms of how
distance computations are used by metric learning. Specif-
ically, we notice that all deep metric learning techniques –
which use the large margin approach shown in Eq. (7) – ex-
hibit some kind of clustering structure, while the rest of the
baselines do not, highlighting the role of deep learning for
metric learning.

Next, we observe that the MDTW-NN baseline for both
datasets shows a clustering which seems to lie on a line.
This is because although deep representations do help with
separation, the pair-wise similarities cannot capture relation-
ships between data samples. This can also be observed from
Fig. 5, where we analyze triplet violations over 20k randomly
chosen triplets. Generally, metrics (I-SEA, Decade, Ma-NN,
GAK, MSA) perform better than similarity measures (Soft-
DTW, MDTW-NN, MDTW). Furthermore, among the neural
network-based methods, valid metrics (I-SEA, Decade, Ma-
NN) outperform the non-metrics (Soft-DTW, MDTW-NN).
These underscore the importance of distance metrics for reli-
able time-series embedding.

Overall, our results demonstrate the importance of a) a
valid distance metric, b) Importance Sampling-based method
to tackle high-dimensional distributions, and c) deep metric
learning to capture complex feature dependence for learning
effective time-series embeddings.

4 Discussion
Summary. Data-driven task-dependent metrics are critical
for learning effective time-series embeddings. These learning
procedures rely on computing pair-wise similarities to effec-
tively encode the geometrical relationships in the given data.
However, unlike distance metrics, similarity measures do
not reliably represent the relationships between data points
from pair-wise measurements. In this work, we develop a
data-driven metric for multi-variate time-series data – I-SEA –
which estimates the distance between data samples using Ex-
pected Alignment. A key contribution here is to enable accu-
rate Expected Alignment computation by developing a way to
implicitly estimate the expectation w.r.t. a (high-dimension)
distribution over all alignment paths using Non-parametric
Density Estimation and Importance Sampling. We establish
the theoretical properties of the proposed metric, and demon-
strate its superior performance in terms of variance reduction,
accuracy, and quality of embeddings on real-world data. A
key observation is that I-SEA shows low variance, while con-
ventional Importance Sampling estimators are known to be
unstable and result in high variance if the distribution over
desired region has a small support (Precup 2000).
Limitations and Future Work. Expected Alignment for
estimating the distance requires additional sampling and dis-
tance computations, which add to the computational overhead
in practice at the training stage. Nevertheless, we demonstrate
that the learned embeddings lead to better performance, while
capturing the geometry of the data and maintaining the order
of time and sample complexity. Although I-SEA can handle
irregular sampling in time-series, a detailed exploration along
with strategies to address missing data challenge remains
an open problem while also considering statistical metrics
(Fawaz et al. 2019). Further, estimating high-dimensional
distribution p(·) by leveraging recent work on sampling from
rare distributions (with significantly more data) also provides
exciting avenues for future explorations (O’Kelly et al. 2018).
Conclusions. Learning meaningful representations from
time-series data is challenging due to the difficulty in con-
structing a valid distance metric, and the high-dimensionality
of the underlying distribution. In this work, we present a way
to tackle the high-dimensionality via Importance Sampling
for effectively leveraging the inherent structure for various
machine learning tasks. Our flexible framework can serve
as a general recipe for future explorations, and for learning
distribution-aware embeddings for multi-variate time-series.
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Supplementary Material for

I-SEA: Importance Sampling and Expected Alignment-based Deep Distance Metric

Learning for Time Series Analysis and Embedding

A Proofs of Theoretical Results

A.1 Proof of Theorem 1

Proof. Non-negativity: For a distance metric d(·), from Definitions 2.2 and 2.3, we have that

DI-SEA(X,Y) =
X

U2{Ul,Uh}

f(U)
X

AU2AU

UX

t=1

d(X↵↵↵U(t),Y���U(t))p(AU ) � 0,

since d(X↵↵↵U(t),Y���U(t)) � 0.
Symmetry: Again, since d(·) is a valid distance metric from Definitions 2.2 and 2.3 we have that

DI-SEA(X,Y) = DI-SEA(Y,X).

Triangle Inequality: For the following discussion, for a time-series of length of T let A(T, U) denote the set of alignment
paths of length U . Now, from Definition 2.3, we have that

DI-SEA(X,Y) =
X

U2{Ul,Uh}

f(U)
X

AU2AU

D(X,Y)
AU

p(AU ), ,

=
X

U2{Ul,Uh}

f(U)
X

a2A(TX ,U)

X

b2A(TY ,U)

DX,Y
a,b p(AU ).

For a fixed length U and a third time-series Z consider the following expression
X

a2A(TX ,U)

X

b2A(TY ,U)

DX,Y
a,b p(a,b) +

X

c2A(TZ ,U)

X

b2A(TY ,U)

DZ,Y
c,b p(c,b),

Therefore. by marginalizing over c and a,
X
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X
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a,b p(a,b, c) +
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c,b p(a,b, c),
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,
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p(a,b, c)
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where we use marginalization over b in the last step. Finally, multiplying both sides by f(U) and summing over U 2 {Ul, Uh}

concludes the proof. ⌅

A.2 Proof of Lemma 2

Proof. Let q(·) denote the distribution we can acquire samples with (this can be Uniform distribution for example), then we can
write

DI-SEA(X,Y) =
X

U2{Ul,Uh}

f(U)
X

AU2AU

D(X,Y)
AU

p(AU ),



as

DI-SEA(X,Y) =
X

U2{Ul,Uh}

f(U)
X

AU2AU

D(X,Y)
AU

p(AU )

q(AU )
q(AU ),

= EU⇠U{Ul,Uh}


EAU⇠q(AU )


D(X,Y)

AU

p(AU )

q(AU )

��
(1)

⌅

A.3 Proof of Lemma 3

Proof. Consider the empirical estimate D̂I-SEA, taking expectation w.r.t. alignment paths AU , and lengths U , we have

EU

h
EAi

h
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ii
= EU

"
EAi

"
1

m

mX
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. (2)

Since alignment paths are drawn independently, we have
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Now, let p(Ai)
q(Ai)

 µ, where µ = O(1). This assumption ensures that the discrepancy between p(Ai) and q(Ai) is bounded1.
Now, since the local distances are bounded by 1 and we have that

0  DX,Y
↵↵↵U ,���U

p(Ai)

q(Ai)
 Uhµ.

Using Hoeffding’s inequality (Hoeffding 1994) we have
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. Finally, this implies that

P
h
|D̂I-SEA �DI-SEA|  ✏

i
� 1� �,

which proves the result. Note that this analysis directly applies to Weighted Importance Sampling variant as well. ⌅

B Algorithm for Uniform Sampling over Alignment Paths

The algorithm for uniformly sampling over all alignment paths is shown in Algorithm B.1. For irregular time series, the sampling
step for ↵↵↵U and ���U can be restricted to the available time-steps instead of NTX and NTY , respectively.

1Such an assumption is at the core of all Importance Sampling (IS) based estimation procedures. Specifically, one of the key assumptions in
Importance Sampling is that for a function F (X),

Ep[F (X)] =

Z
F (x)p(x)dx,

can be estimated using a distribution q(·) as

Ep[F (X)] = Eq[F (X) p(X)
q(X) ],

if q(·) = 0 implies that F (·)p(·) = 0. In other words, q(·) > 0 if F (·)p(·) 6= 0; hence our upper-bound (Rubinstein and Kroese 2016). Further,
this ratio is also reminiscent of the Kullback-Leibler divergence between the two distributions. In practice, closer the two distributions, the
better the performance of the IS-based estimator, which is the primary motivation for opting for parametric and non-parametric methods (Zhang
1996).



Algorithm B.1: Uniform Sampling of Alignment Paths

Input :Multi-variate time-series X 2 Rn⇥TX and Y 2 Rn⇥TY , and alignment path length limits Ul and Uh.
Output :Sampled alignment path AU := (↵↵↵U ,���U )

1: Sample alignment path length U ⇠ U{Ul, Uh}.
2: Sample ↵↵↵U 2 NTX and ���U 2 NTY independently such that

PTX

i=1 ai = U and
PTY

j=1 bj = U

where element ai of vector a 2 NTX , indicates the number of times the i-th time-step of X is repeated in ↵↵↵U , and likewise for
vector b 2 NTY ; see also Che et al. (2017) Pg. 3 Sec. 3.1.

(a) UCI-EEG (32)

(i) PCA (ii) MDS (iii) tSNE

(b) UCI-EEG (64)

(i) PCA (ii) MDS (iii) tSNE

(c) PhysioNet

(i) PCA (ii) MDS (iii) tSNE

Figure C.1: Visualizing raw data via embeddings. Panels (a), (b), and (c) show the raw embeddings for UCI-EEG (32), UCI-EEG
(64), and the PhysioNet dataset, respectively. For each of these panels (i), (ii), and (iii) correspond to embedding to a 2-D space
via Principal Component Analysis (PCA), Multidimensional Scaling (MDS), and t-distributed Stochastic Neighbor Embedding
(t-SNE), respectively. Green and red denote the two classes in the dataset. (Best viewed in color.)

C Detailed Results

C.1 Experimental Details

Pre-processing We standardize the data such that the resulting dataset is normalized to have zero-mean and unit variance
across the features/variables. In addition, since the observations are recorded irregularly in case of the PhysioNet Dataset, there
are a number of missing entries. To this end, we use mean-based missing value imputation scheme. In addition, if multiple values
were observed for a variable in an hour, we use their mean to form the observation for that hour. Fig. C.1 shows the embeddings
of the raw data using Principal Component Analysis (PCA), Multidimensional Scaling (MDS), and t-distributed Stochastic
Neighbor Embedding (tSNE).



Table C.1: K-Nearest Neighbor Accuracy for the UCI-EEG (32) dataset.

Method
K-Nearest Neighbour Accuracy

K = 1 K = 3 K = 5 K = 7 K = 9 K = 11 K = 13 K = 15 K = 17 K = 19

I-SEA (WIS-KDE) 0.955± 0.016 0.955± 0.015 0.955± 0.015 0.952± 0.016 0.953± 0.018 0.952± 0.02 0.952± 0.02 0.948± 0.022 0.948± 0.022 0.948± 0.022
I-SEA (WIS-Unif) 0.950± 0.017 0.955± 0.009 0.953± 0.01 0.950± 0.009 0.950± 0.011 0.950± 0.014 0.950± 0.014 0.945± 0.014 0.945± 0.014 0.948± 0.016

Decade 0.946± 0.015 0.951± 0.02 0.951± 0.02 0.946± 0.017 0.945± 0.021 0.946± 0.019 0.946± 0.019 0.945± 0.019 0.943± 0.018 0.941± 0.018
Soft-DTW 0.916± 0.014 0.906± 0.01 0.906± 0.01 0.913± 0.012 0.911± 0.012 0.911± 0.015 0.911± 0.015 0.91± 0.016 0.908± 0.017 0.91± 0.012
MDTW-NN 0.905± 0.025 0.910± 0.026 0.912± 0.024 0.918± 0.019 0.917± 0.019 0.913± 0.019 0.908± 0.022 0.915± 0.026 0.913± 0.027 0.917± 0.026
Ma-NN 0.913± 0.017 0.910± 0.024 0.915± 0.021 0.912± 0.026 0.907± 0.031 0.905± 0.030 0.908± 0.032 0.907± 0.035 0.908± 0.035 0.910± 0.036
MDTW 0.723± 0.022 0.690± 0.030 0.685± 0.037 0.667± 0.035 0.655± 0.025 0.637± 0.032 0.617± 0.020 0.612± 0.030 0.595± 0.032 0.597± 0.019
GAK 0.717± 0.026 0.702± 0.036 0.677± 0.022 0.677± 0.043 0.663± 0.037 0.638± 0.033 0.632± 0.043 0.627± 0.030 0.608± 0.026 0.588± 0.021
MSA 0.680± 0.037 0.648± 0.028 0.617± 0.026 0.583± 0.026 0.583± 0.037 0.568± 0.050 0.567± 0.044 0.560± 0.040 0.553± 0.048 0.542± 0.033
LDMLT 0.677± 0.034 0.613± 0.042 0.592± 0.059 0.568± 0.068 0.542± 0.070 0.540± 0.068 0.530± 0.073 0.523± 0.078 0.520± 0.074 0.515± 0.072

Table C.2: K-Nearest Neighbour Accuracy for UCI EEG (64) dataset.

Method
K-Nearest Neighbour Accuracy

K = 1 K = 3 K = 5 K = 7 K = 9 K = 11 K = 13 K = 15 K = 17 K = 19

I-SEA (WIS-KDE) 0.953± 0.021 0.947± 0.023 0.945± 0.022 0.947± 0.022 0.945± 0.021 0.945± 0.021 0.945± 0.021 0.943± 0.022 0.942± 0.022 0.94± 0.024
I-SEA (WIS-Unif) 0.935± 0.021 0.935± 0.023 0.933± 0.022 0.933± 0.022 0.932± 0.021 0.932± 0.026 0.935± 0.026 0.933± 0.028 0.933± 0.023 0.932± 0.026

Decade 0.937± 0.024 0.932± 0.026 0.928± 0.025 0.928± 0.024 0.926± 0.023 0.925± 0.022 0.927± 0.023 0.927± 0.02 0.927± 0.02 0.927± 0.02
Soft-DTW 0.903± 0.036 0.922± 0.021 0.917± 0.02 0.913± 0.025 0.915± 0.024 0.913± 0.025 0.913± 0.024 0.917± 0.026 0.913± 0.029 0.91± 0.029
MDTW-NN 0.927± 0.021 0.92± 0.026 0.922± 0.03 0.92± 0.026 0.922± 0.025 0.923± 0.0276 0.918± 0.036 0.923± 0.04 0.922± 0.04 0.922± 0.04
Ma-NN 0.775± 0.028 0.78± 0.036 0.78± 0.037 0.777± 0.035 0.78± 0.032 0.782± 0.034 0.787± 0.031 0.783± 0.035 0.783± 0.035 0.788± 0.032
MDTW 0.688± 0.056 0.677± 0.053 0.643± 0.039 0.657± 0.04 0.645± 0.045 0.635± 0.041 0.62± 0.029 0.6± 0.016 0.6± 0.028 0.597± 0.035
GAK 0.678± 0.055 0.675± 0.018 0.678± 0.039 0.643± 0.045 0.633± 0.032 0.605± 0.033 0.593± 0.038 0.592± 0.04 0.587± 0.033 0.592± 0.026
MSA 0.63± 0.058 0.623± 0.062 0.608± 0.048 0.598± 0.041 0.593± 0.05 0.593± 0.029 0.592± 0.033 0.577± 0.027 0.562± 0.033 0.565± 0.034
LDMLT 0.638± 0.036 0.613± 0.038 0.583± 0.028 0.557± 0.037 0.533± 0.04 0.522± 0.034 0.52± 0.04 0.513± 0.038 0.512± 0.038 0.51± 0.039

(a) I-SEA (WIS-KDE) (b) I-SEA (WIS-Unif) (c) Decade (d) Soft-DTW (e) MDTW-NN

(f) Ma-NN (g) MDTW (h) GAK (i) MSA (j) LDMLT

Figure C.2: Embedding UCI-EEG Dataset (64) based on pair-wise distances/similarities using Multidimensional Scaling (Cox
and Cox 2008). Panels (a)-(f) show the neural network-based techniques, while panels (g)-(j) show the data-independent methods.
Panel (j) shows the LDMLT-based embedding which uses data-dependent linear transformations only. (Best viewed in color).

Baselines We use the following similarity and distance metric measures to evaluate the performance of I-SEA for the metric
learning tasks on the aforementioned datasets. These include both data independent and dependent methods.
1. MDTW: Multivariate Dynamic Time Warping (MDTW) is a popular variant of Dynamic Time Warping (DTW) for

multivariate time-series alignment and similarity computation. This is a data-independent technique, and is not a valid metric.
2. MDTW-NN: A neural network-based MDTW technique and hence can be viewed as a data-dependent counterpart of MTDW.

The method computes the MDTW similarity measure in the transformed space.
3. GAK: Global Alignment Kernel is a data-independent metric which uses a positive semi-definite kernel to measure all

similarities between time-series enabled by the kernel-trick (Cuturi 2011; Cuturi et al. 2007). We follow the recommendation
of the authors to set the hyper-parameters for our experiments.

4. Decade: is an Expected Alignment based distance metric which samples the alignment paths uniformly to estimate the
distance between time-series (Che et al. 2017). This metric is used in conjunction with a neural network, therefore serves as a
baseline for deep metric learning with Expected Alignment.

5. Soft-DTW We use a neural network-based Soft-DTW is a differentiable DTW variant which can be used as a regularizer for
training, it computes a soft minimum over all alignment paths (Cuturi and Blondel 2017).

6. Ma-NN or Manhattan Neural Network baselines is based on the Siamese architectures proposed by Mueller and Thyagarajan
(2016). This models compares the Manhattan-based (`1) distance metric between the learned representations to compare the



Table C.3: K-Nearest Neighbour Accuracy for the PhysioNet dataset

Method
K-Nearest Neighbour Accuracy

K = 1 K = 3 K = 5 K = 7 K = 9 K = 11 K = 13 K = 15 K = 17 K = 19

I-SEA (WIS-KDE) 0.659± 0.011 0.673± 0.007 0.673± 0.006 0.673± 0.01 0.676± 0.016 0.671± 0.008 0.672± 0.009 0.671± 0.007 0.671± 0.004 0.671± 0.002
I-SEA (WIS-Unif) 0.652± 0.016 0.666± 0.025 0.672± 0.026 0.672± 0.03 0.672± 0.023 0.674± 0.021 0.672± 0.028 0.668± 0.029 0.669± 0.028 0.670± 0.028

Decade 0.653± 0.029 0.671± 0.024 0.668± 0.028 0.669± 0.023 0.669± 0.028 0.667± 0.032 0.669± 0.029 0.672± 0.032 0.670± 0.031 0.671± 0.034
Soft-DTW 0.622± 0.046 0.636± 0.031 0.639± 0.031 0.638± 0.032 0.639± 0.032 0.639± 0.03 0.638± 0.033 0.638± 0.037 0.639± 0.034 0.638± 0.034
MDTW-NN 0.642± 0.032 0.648± 0.036 0.655± 0.026 0.650± 0.023 0.643± 0.021 0.646± 0.018 0.643± 0.020 0.643± 0.018 0.643± 0.021 0.642± 0.019
Ma-NN 0.641± 0.024 0.634± 0.021 0.650± 0.019 0.648± 0.017 0.655± 0.021 0.653± 0.022 0.653± 0.021 0.654± 0.025 0.652± 0.025 0.650± 0.025
MDTW 0.621± 0.015 0.632± 0.020 0.643± 0.030 0.664± 0.030 0.660± 0.040 0.652± 0.035 0.645± 0.048 0.647± 0.039 0.650± 0.040 0.653± 0.029
GAK 0.613± 0.012 0.633± 0.023 0.648± 0.022 0.655± 0.031 0.654± 0.041 0.649± 0.033 0.649± 0.040 0.644± 0.027 0.650± 0.030 0.648± 0.035
MSA 0.622± 0.012 0.631± 0.022 0.645± 0.026 0.662± 0.030 0.660± 0.038 0.649± 0.039 0.644± 0.049 0.650± 0.038 0.651± 0.045 0.652± 0.034
LDMLT 0.632± 0.015 0.646± 0.033 0.649± 0.033 0.650± 0.036 0.668± 0.024 0.673± 0.015 0.668± 0.025 0.679± 0.027 0.678± 0.021 0.674± 0.025

(a) I-SEA (WIS-KDE) (b) I-SEA (WIS-Unif) (c) Decade (d) Soft-DTW (e) MDTW-NN

(f) Ma-NN (g) MDTW (h) GAK (i) MSA (j) LDMLT

Figure C.3: Embedding PhysioNet Dataset based on pair-wise distances/similarities using Multidimensional Scaling (Cox and
Cox 2008). Panels (a)-(f) show the neural network-based techniques, while panels (g)-(j) show the data-independent methods.
Panel (j) shows the LDMLT-based embedding which uses task-dependent linear transformations only. (Best viewed in color).

time-series.
7. MSA: Multiple Sequence Alignment is a popular data-independent technique to compute distances between multivariate

time-series data (Hogeweg and Hesper 1984). We use Euclidean distance for local distances.
8. LDMLT: LogDet divergence based Metric Learning with Triplets constraints is a Mahalanobis distance and DTW similarity-

based data-dependent metric learning approach which uses linear transformation before similarity computation via DTW (Mei
et al. 2015).

Experimental Set-up We use 5-fold stratified cross-validation to test the performance of all methods. For each fold, we run 5
training epochs with a learning rate of 10�3, and use 3 targets and 10 imposters for each sample. We set the hyper-parameters
� = 1 and � = 2. For DECADE and I-SEA, we set [m,Ul, Uh] = [10, 32, 48] and [5, 48, 60] for the UCI EEG and the PhysioNet
datasets, respectively, and use 5 adaptive KDE steps.

C.2 Additional Learned Embeddings and Detailed K-NN Accuracy results

In this appendix, we list additional learned embeddings detailed K-Nearest Neighbor (K-NN) accuracy via the mean and
standard deviation across 5-cross-validation folds corresponding to Fig. 3 and Section 3.4. The hyperparameter settings and other
experimental specifics are as shown in Section 3 and Appendix C.1.

K-NN Accuracy results and Learned Embeddings for UCI-EEG Dataset Table C.1 and Table C.2 show the mean and
standard deviation of the K-NN accuracy results across the cross-validation folds for I-SEA and the baselines shown in
Appendix C.1 for the UCI-EEG (32) and UCI EEG (64) dataset, respectively. The learned embeddings for UCI EEG (32) and
UCI EEG (64) dataset across various methods are shown in Fig. 4 and Fig. C.2, respectively.

K-NN Accuracy results and Learned Embeddings for PhysioNet Dataset Table C.3 shows the mean and standard deviation
of the K-NN accuracy results across the cross-validation folds for I-SEA and the baselines shown in Appendix C.1 for the
PhysioNet Dataset. The learned embeddings for the PhysioNet dataset across various methods are shown in Fig. C.3.
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