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Abstract

Artificial intelligence (AI) for Climate Change efforts have made significant
progress in forecasting atmospheric weather patterns and events. Despite this,
translating these gains in the context of phenomenon on earth surface, e.g. sea-
ice concentration, has been limited because of differences in how these physical
processes evolve. Sea ice concentration is one of the key indicators of climate
change and is also critical for a number of different applications and indigenous
peoples. Consequently, there is an acute need to develop a baseline of a diverse set
of modern machine learning techniques within the Arctic. Our work aims to fill
this gap, with the goal of both informing current research, as well as pointing out
limitations with certain architectures. We achieve this by providing baselines for a
number of different convolutional LSTMs, transformer based, and neural operator
based machine learning methods.

1 Introduction

While popular imagination might view the Arctic as a cold and barren region, it is home to a complex
and important ecosystem [1]. Unfortunately, in recent years the Arctic has experienced a rapid
warming due to climate change resulting in unprecedented changes to the sea-ice dynamics [1, 2].
Many remote and native Arctic communities depend upon the ice for transportation, hunting, and
general way of life. These communities have developed inter-generational knowledge of sea-ice
patterns to thrive in the Arctic climate [3, 4]. However, the changing climate and ice conditions
have started to threaten their way of life by making the use of the ice more dangerous [4]. For these
reasons short term high resolution ice forecasts are not only critical for day-to-day operations and
weather forecasting [5, 6], but for these remote communities as well [7].

Despite the significance of this problem, there is a lack of works focusing on providing strong
baselines for different model architectures for sea-ice forecasting. Many sea-ice forecasting works
elect to focused on either a singular or small subset of architectures. This is alongside the fact that
many works focus on different regions within the Arctic, at different data resolutions, and for different
forecast horizons. These differences make comparing results between works incredibly difficult,
hence the motivation for a baseline of architectures all evaluated under the same conditions. Besides
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Figure 1: Polar-centric view (left) shows our selected forecast coordinates highlighted with a red
rectangle. The domain-centric view (right) displays a sea-ice concentration sample.

providing for a good starting point for performance evaluation, baselines can also help uncover
patterns of success and limitations between architectures inspiring future research.

2 Dataset

The data source uses the GLORYS12V1 product [8] and is largely based on the CMEMS system.
This study used twenty years of daily historical sea ice concentration data within the Beaufort Sea
in the Canadian Arctic (see 1). We focus on the freeze up period of September to December. We
use the years 2000 to 2016 for training, 2017 to 2018 for validation, and 2019 to 2020 for testing,
which was selected based upon the most recent ice concentration values in the data product. The data
spatial resolution is 0.083◦ × 0.083◦ and we manually selected a region between Latitude 70.00 and
80.66 and Longitudes -144.00 and -133.33 which results in images of size 128× 128 for the models
to ingest.

3 Methodology

3.1 Problem Setting

The goal of this task is to produce short range high resolution sea ice forecasts, ingesting five days of
ice concentration to predict the following fourteen days, selected based upon existing literature [5, 6].
We could formally define this as f : X → Y where X ∈ R1×5×128×128 and Y ∈ R1×14×128×128

for our 1 variable (sea ice concentration) and 128× 128 spatial grid.

3.2 Previous Works

Past works have focused on linear models [9, 10] to predict sea-ice concentration. While intuitive,
restricting models to a linear relationship can be too restrictive for the complex dynamics of sea-ice.
Other works have focused on using convolutional neural networks, alone and in a U-Net structure,
to capture spatial dynanmics [11, 12, 13, 14]. To model temporal dynamics, convolutional (Conv)
LSTMs [15] have been applied to great effect [16, 17, 18, 19, 20].

In recent years, transformers have been gaining popularity for a number of tasks [21, 22, 23]
including time series forecasting [24, 25]. Despite this, criticism has been raised as to the efficiency
and effectiveness of transformers for time series applications [26, 27]. Existing works have applied
transformers to forecast sea-ice extent (total area of sea ice in a region) [28], however this does not
produce the ice-charts that are critical to our applications. Other works have applied transformers in
a spatial-temporal nature, however these either predict ice presence rather than concentration [19],
focus on a very small and specific shipping pathway [29], or work with low resolution data [30].
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Figure 2: Samples for a forecast generated from our Conv LSTM model between Oct 13th and Oct
25th 2020 (outside training window). We compare the predictions (top) and the actuals (bottom).

A commonality between many of these works is that they focus on only a singular or select subset
of architectures, and are being applied to different regions at different data resolutions. This makes
comparing performance for insights amongst works incredibly difficult and uninformative.

3.3 Baselines

We present a baseline for a number of common forecasting architectures for the sea-ice domain. The
first group are Conv LSTM models [15]. We implement both a standard Conv LSTM predicting
sea-ice concentration as well as a second one predicting the daily change in sea-ice concentration at
each time step (Conv LSTM Residual).

We present three transformer based models, each using a different prediction strategy. The first
being a decoder only approach (Transformer Decoder) which predicts ice concentration one day ahead
with a causal attention mask that prevents data-leakage at training and testing done auto-regressively.
The second approach (Transformer Residual) is similar to the decoder-only approach however it trains
and tests auto-regressively. The third is an encoder-decoder (Transformer Single Shot) architecture
which encodes the historical ice observations before passing them to the decoder mechanism. A
combination of self-attention and cross-attention layers allow the decoder tokens to attend to the
historicals as well as each other. This approach produces predictions for every token within the
forecast horizon simultaneously.

An issue with transformers is the computational complexity of the attention mechanism [31]. We
separate spatial and temporal attention into separate layers to limit the number of tokens being
attended to at any one time. We also use a sliding window approach [32] for the spatial attention with
window sizes of 5x5 or 7x7 to reduce the sequence length of attention.

The final baseline we present comes from the family of operator based methods, which aim to
parameterize resolution invariant operations [33]. This removes a model’s dependency on a specific
input resolution. To ensure fair training conditions, we continue to train and test at the same resolution
as the other models. The operator selected is the Fourier neural operator (FNO) which learns to
parameterize a global convolutional kernel in the Fourier domain [33].

4 Results

To quantitatively compare the forecasting performance of the different architectures we report
a number of common forecasting metrics described in table 4. We observe that the Conv LSTM
models perform best, closely followed by the FNO. It should be noted that the FNO is a very
computationally efficient model, especially if trained at lower resolutions. Interestingly, we observe
that the transformer architectures struggled compared to other architectures. They all shared a similar
lead time to error curve profile to that of the persistence model, displaying a difficulty in capturing
the evolving dynamics of the sea-ice.
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Table 1: The MAE, MSE, the MAE of predicted versus actual day-to-day ice concentration change
(Step MAE), and sea-ice extent error (SIE) measuring the error in total ice area predicted per time
step. All metrics are calculated from test set forecasts.

Model MAE MSE Step MAE SIE

Persistance 7.041× 10−2 3.035× 10−2 1.778× 10−2 7.77× 102

Transformer Decoder 7.098× 10−2 3.034× 10−2 1.794× 10−2 7.01× 102

Transformer Residual 7.016× 10−2 2.786× 10−2 1.863× 10−2 6.36× 102

Transformer Single Shot 6.922× 10−2 2.734× 10−2 1.838× 10−2 6.44× 102

FNO 6.403× 10−2 2.195× 10−2 1.851× 10−2 5.04× 102

Conv LSTM Residual 5.721× 10−2 2.231× 10−2 1.864× 10−2 5.61× 102

Conv LSTM 5.628× 10−2 2.129× 10−2 1.912× 10−2 5.35× 102

Figure 3: The lead time in days versus the MAE averaged over our test set. Left shows the raw MAE
while right shows the MAE above the persistence model (lower is better).

To qualitatively analyze our results we present a sample forecast in figure 2 from the Conv LSTM
model during mid to late October. This period was selected as it sits in between the periods of ice
freeze-up beginning and when the ice has frozen over resulting in limited changes inside the domain.
We can observe that the model performs well at forecasting the freeze up, and we specifically observe
the accurate forecast of the freeze up on the lower left hand side of the domain.

5 Conclusion

We present a study comparing the performance of a number of modern machine learning approaches
for sea-ice forecasting. Our goal is to provide a baseline that will both highlight a number of different
forecasting methodologies, but also inspire future research into the sea-ice forecasting domain. We
intend to provide open source code upon acceptance in a readable and reproducible format.

With all the attention around transformers, we want to specifically comment on their poor performance
under our experiment setup. This is not to claim that transformers are ineffective for sea-ice forecast-
ing, but highlight that some limitations exist that need to be addressed for their proper application.
One important factor is data availability and model scaling for success [34, 26], something that can be
difficult to achieve with rapidly changing conditions, making historical Arctic patterns less predictive
of future ones.
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