PROVABLE ONLINE CP/PARAFAC DECOMPOSITION OF A STRUCTURED TENSOR VIA DICTIONARY LEARNING

OVERVIEW

We consider the problem of factorizing a structured 3-way tensor into its constituent Canonical Polyadic (CP) factors. This decomposition, which can be viewed as a generalization of singular value decomposition (SVD) for tensors, reveals how the tensor dimensions (features) interact with each other.

Since the factors are a priori unknown, the corresponding optimization problems are inherently non-convex. The existing guaranteed algorithms which handle this non-convexity **incur an irreducible error (bias)**, and only apply to cases where all factors have the same structure.

Under some relatively mild conditions on initialization, rank, and sparsity,

A Dictionary Learning Problem!

Sirisha Rambhatla sirishar@usc.edu

USC University of Southern California

Xingguo Li xingguol@cs.princeton.edu

MAIN RESULT								
L: Neurally decomposit	plausible alternating Optimization-based Online Dic- tions.	Tensor NOODL Main Result Under so	ome conditions on initial	ization and				
ppropria and the f imate of hich is (c ₀ ,	te initial estimate $A^{(0)}$ of A , and parameters actor (timates $B^{(0)}$ and $C^{(1)}$ (corresponding to the A , $B^{(t)}$, and $C^{(t)}$ at each iteration t 2)-near to $A^{(t)}$ for $e_0 = O^{(1/\log(n))}$	herence of $\mathbf{A}^{(t)}$ and sparsity of $\mathbf{B}^{(t)}$ and $\mathbf{C}^{(t)}$, with probab least $(1 - \delta_{alg})$ for some small constant δ_{alg} the estimate $\hat{\mathbf{X}}^{(t)}$ iteration has the correct signed-support and satisfies						
fficients) (^{(I)T} V) he spars	e matrix X for the current iterate	$(\hat{\mathbf{X}}_{i,j}^{(t)} - \mathbf{X}_{i,j}^{*(t)})^2 \le \zeta^2 := \mathcal{O}$	$\mathcal{P}(s(1-\omega)^{t/2} \ \mathbf{A}_i^{(0)} - \mathbf{A}_i^* \), \forall (0)$	$i, j) \in supp($				
erative Hard Thresholding (2) (3) Rao Product Structure: Recover B ^(t) and C ^(t) given X Lue Decomposition-based Algorithm (4) the incoherent factor A based on X proximate Gradient Descent		Consequently, UntangleKRP recovers the supports of the factors $\mathbf{B}^{*(t)}$ and $\mathbf{C}^{*(t)}$ correctly, and $\ \hat{\mathbf{B}}_{i}^{(t)} - \mathbf{B}_{i}^{*(t)}\ _{2} \le \epsilon_{B}$ and $\mathbf{C}_{i}^{*(t)}\ _{2} \le \epsilon_{C}$, where $\epsilon_{B} = \epsilon_{C} = \mathcal{O}(\frac{\zeta^{2}}{\alpha\beta})$. Furthermore, the estimate $\mathbf{A}^{(t)}$ at <i>t</i> -th iteration satisfies $\ \mathbf{A}_{i}^{(t)} - \mathbf{A}_{i}^{*}\ ^{2} \le (1 - \omega)^{t}\ \mathbf{A}_{i}^{(0)} - \mathbf{A}_{i}^{*}\ ^{2}$, $\forall t = 1, 2,$ for some $0 < \omega < 1/2$.						
of A*	Properties of Sparse Factors	Appropriate Initialization	Sparsity	Paramete				
A * ntly ut″	Two sources of randomness: Location of the non-zero entries (Support) and, Values taken by the non-zero entri	$\ \mathbf{A}^{(0)} - \mathbf{A}^*\ \le 2\ \mathbf{A}^*\ $ $\ \mathbf{A}_i^{(0)} - \mathbf{A}_i^*\ \le \epsilon_0$	$\alpha \beta = \mathcal{O}(\sqrt{n}/m\mu \log(n))$ for $m = \Omega(\log(\min(J, K))/\alpha\beta)$	Approp chosen s and thr				

DEALING WITH THE KRONECKER DEPENDENCE STRUCTURE: DETAILS

Values taken by the non-zero entries

Jarvis Haupt jdhaupt@umn.edu

X University of Minnesota Driven to Discover^s

EXPERIMENTS

Synthetic Data

d incooility at) at t-th

sparse $\|\hat{\mathbf{C}}_{i}^{(t)}\|$

er Choice

priately step size reshold parameters

 \times

Fig. 2: Number of Iterations as a Surrogate for Sample Requirement to Reach a Target Tolerance of 10⁻¹⁰

Take-away: TensorNOODL achieves orders of magnitude better performance, recovering the factors at a linear rate, while also providing guarantees on recovery of ALL factors!

Real-World Data

Fig. 3: NBA Shot-Pattern Analysis 100 Players, 27 Weeks from 2018-19

(a) Element 4 Corresponding Player

0.4668

(b) Element 5 ts ent 6 334

(c) Element 6

Sparse factor (Players) Coefficient							
lement 4	Element 5	Eleme					
0.1992	0.0678	0.28					

James Harden Devin Booker 0.01140.0104

ensor	NO	ÓDL	

https://github.com/srambhatla/TensorNOODL

https://arxiv.org/abs/2006.16442

[1] S. Rambhatla, X. Li, and J. Haupt. Provable Online CP/PARAFAC Decomposition of a Structured Tensor via Dictionary Learning. To appear in the proceedings of the *Neural Information Processing Systems (NeurIPS)*, 2020.

[2] S. Rambhatla, X. Li, and J. Haupt. NOODL: Provable Online Learning for Dictionary Learning and Sparse Coding. International Conference on Learning Representations (ICLR), 2019.

[3] S. Arora, R. Ge, T. Ma and A. Moitra. Simple, efficient, and neural algorithms for sparse coding. *In Conference* on Learning Theory (COLT), 2015.

[4] J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online dictionary learning for sparse coding. In Proceedings of the *International Conference on Machine Learning (ICML)*. 2009.

The authors graciously acknowledge the support from the DARPA YFA, Grant N66001-14-1-4047. The authors also express their gratitude to Prof. Nikos Sidiropoulos and Di Xiao for helpful discussions.