

DICTIONARY-BASED GENERALIZATION ()⊢ ROBUST PCA

Sirisha Rambhatla, Xingguo Li, and Jarvis Haupt

UNIVERSITY OF MINNESOTA **Driven to Discover**SM

December 2016

What is this work about? dictionary (known) Thin (n > d) or Fat (n < d)d \mathcal{M} R nddictionary sparse part s non-zeros globally

2

Applications

Figure source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

Traffic Anomalies

Mardani, Mateos and Giannakis, 2013

Fat dictionary

Topic Modeling

Hyper-Spectral Imaging

Thin dictionary

Thin dictionary

(More on this later)

Recall

dictionary (known) Thin (n > d) or Fat (n < d)d ${\mathcal m}$ R nddictionary sparse part s non-zeros globally

4

Optimization Problem

minimize $\|\mathbf{X}\|_* + \lambda \|\mathbf{A}\|_1$ s.t. $\mathbf{Y} = \mathbf{X}_0 + \mathbf{R}\mathbf{A}_0$ (1) $\mathbf{X}_{,\mathbf{A}}$

 $\|.\|_* =$ nuclear norm and $\|.\|_1 = l_1$ -norm of the vectorized matrix.

5

Centered Data

V

Low-Rank Approximation

X

Pearson, 1901

PCA

Gaussian Noise N

Robust PCA

Data \mathbf{V}

Candès, Li, Ma, and Wright, 2009 Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2011 and many more ...

+

Sparse

Low-Rank

X

Outlier Pursuit

Data V

Xu, Caramanis, and Sanghavi, 2010

+

Low-Rank

X

Column-Sparse

Low-rank Plus Dictionary Sparse Decomposition

Data

Low-Rank

Mardani, Mateos, and Giannakis, 2013

+

Dictionary (Known)

sparse Coefficients

Low-rank Plus Dictionary Sparse Decomposition

Data

Low-Rank

Mardani, Mateos, and Giannakis, 2013

Fat, orthogonal rows

+

Dictionary (Known)

Sparse Coefficients

k-sparse column and rows

Our Contributions

Establish recovery results for the Thin dictionary case with constraints on the global sparsity of A Establish recovery results for the Fat dictionary case with constraints on the global sparsity of A and k non-zeros per column

Remove orthogonality constraint on the rows of the dictionary

Our Contributions

Establish recovery results for the Thin dictionary case with constraints on the global sparsity of A

This talk

Establish recovery results for the Fat dictionary case with constraints on the global sparsity of A and k non-zeros per column

Remove orthogonality constraint on the rows of the dictionary

In paper (analogous to the thin case)

Theoretical Underpinnings So, what exactly do we need for exact recovery of X and A?

-	
ŀ	I

Frame Condition

For all vectors $v \in \mathbb{R}^d$,

$$\mathbf{F}_L \|\mathbf{v}\|_2^2 \le \|\mathbf{R}\mathbf{v}\|_2^2 \le \mathbf{F}_U \|\mathbf{v}\|_2^2$$
$$0 < \mathbf{F}_L \le \mathbf{F}_U$$

Thin (n > d)

Restricted Isometry Property

For all k-sparse vectors $v \in \mathbb{R}^d$,

 $(1-\delta) \|\mathbf{v}\|_2^2 \le \|\mathbf{R}\mathbf{v}\|_2^2 \le (1+\delta) \|\mathbf{v}\|_2^2$

Fat (n < d)

dictionary sparse part s non-zeros globally

Recall

Subspaces

$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}'$

 Φ

 $UW_1 + W_2V'$, $\mathbf{W_1}, \mathbf{W_2} \in \mathbb{R}^{\mathbf{n} imes \mathbf{r}}$

 $\mathbf{\Omega}$

 $\mathbf{H} \in \mathbb{R}^{d imes m}$ Same support as \mathbf{A}_0

Low-rank Х

Sparse Coefficient Α

Optimality Conditions

X.A First-order $\Lambda \in \partial_X \|\mathbf{X}\|_* |_{\mathbf{X}=\mathbf{X}_0} \mathbf{R}' \Lambda \in \lambda \partial_A \|\mathbf{A}\|_1 |_{\mathbf{A}=\mathbf{A}_0}$ optimality

 $\|.\|_* =$ nuclear-norm and $\|.\|_1 = l_1$ -norm

minimize $\|\mathbf{X}\|_* + \lambda \|\mathbf{A}\|_1$ s.t. $\mathbf{Y} = \mathbf{X} + \mathbf{R}\mathbf{A}$ (1) $\mathcal{L}(\mathbf{X}, \mathbf{A}, \mathbf{\Lambda}) = \|\mathbf{X}\|_* + \lambda \|\mathbf{A}\|_1 + \langle \mathbf{\Lambda}, \mathbf{Y} - \mathbf{X} - \mathbf{R}\mathbf{A} \rangle$

Optimality Conditions

minimize $\|\mathbf{X}\|_* + \lambda \|\mathbf{A}\|_1$ s.t. $\mathbf{Y} = \mathbf{X} + \mathbf{R}\mathbf{A}$ (1) \mathbf{X}, \mathbf{A} $\mathcal{L}(\mathbf{X}, \mathbf{A}, \mathbf{\Lambda}) = \|\mathbf{X}\|_* + \lambda \|\mathbf{A}\|_1 + \langle \mathbf{\Lambda}, \mathbf{Y} - \mathbf{X} - \mathbf{R}\mathbf{A} \rangle$ First-order $\Lambda \in \partial_X \|\mathbf{X}\|_* |_{\mathbf{X}=\mathbf{X}_0} \mathbf{R}' \Lambda \in \lambda \partial_A \|\mathbf{A}\|_1 |_{\mathbf{A}=\mathbf{A}_0}$ optimality

 $\|.\|_* =$ nuclear-norm and $\|.\|_1 = l_1$ -norm

Optimality Conditions

$$\begin{array}{l} \text{minimize} \quad \|\mathbf{X}\|_* + \\ \mathcal{L}(\mathbf{X}, \mathbf{A}, \mathbf{\Lambda}) = \|\mathbf{X}\|_* + 2 \\ \hline \\ \textbf{First-order} \quad \mathbf{\Lambda} \in \partial_X \|\mathbf{X}\|_* |_{\mathbf{X} = \mathbf{X}_0} \end{array}$$

 $\|.\|_* =$ nuclear-norm and $\|.\|_1 = l_1$ -norm

$\lambda \|\mathbf{A}\|_1$ s.t. $\mathbf{Y} = \mathbf{X} + \mathbf{R}\mathbf{A}$ (1) $\lambda \|\mathbf{A}\|_1 + \langle \mathbf{\Lambda}, \mathbf{Y} - \mathbf{X} - \mathbf{R}\mathbf{A} \rangle$

 $\mathbf{R}'\mathbf{\Lambda} \in \lambda \partial_A \|\mathbf{A}\|_1 \|_{\mathbf{A} = \mathbf{A}\mathbf{O}}$

Dual Certificate

$\Lambda \in \mathbf{UV}' + \mathbf{W}, \|\mathbf{W}\| \leq 1, \ \mathcal{P}_{\Phi}(\mathbf{W}) = \mathbf{0}_{n \times m}$ First-order $\mathbf{R}' \mathbf{\Lambda} \in \lambda \operatorname{sign}(\mathbf{A}_0) + \lambda \mathbf{F}, \|\mathbf{F}\|_{\infty} \leq 1, \ \mathcal{P}_{\Omega}(\mathbf{F}) = \mathbf{0}_{d \times m}$ optimality

Lemma 1: (from Lemma 2 in Mardani et. al and Thm. 3 in Xu et. al.): If there exists a dual certificate $\Gamma \in \mathbb{R}^{n \times m}$ satisfying

then the pair $\{\mathbf{X}_0, \mathbf{A}_0\}$ is the unique solution of eq (1).

denotes the orthogonal complement.

C1 : $\mathcal{P}_{\Phi}(\Gamma) = \mathbf{U}\mathbf{V}'$ C2 : $\mathcal{P}_{\Omega}(\mathbf{R}'\Gamma) = \lambda \operatorname{sign}(\mathbf{A}_0)$ C3 : $\|\mathcal{P}_{\Phi^{\perp}}(\mathbf{\Gamma})\| < 1$ C4 : $\|\mathcal{P}_{\Omega^{\perp}}(\mathbf{R}'\mathbf{\Gamma})\|_{\infty} < \lambda$

Dual Certificate

$\Lambda \in \mathbf{UV}' + \mathbf{W}, \|\mathbf{W}\| \le 1, \ \mathcal{P}_{\Phi}(\mathbf{W}) = \mathbf{0}_{n \times m}$ First-order optimality

Lemma 1: (from Lemma 2 in Mardani et. al and Thm. 3 in Xu et. al.): If there exists a dual certificate $\Gamma \in \mathbb{R}^{n \times m}$ satisfying

then the pair $\{X_0, A_0\}$ is the unique solution of eq (1).

denotes the orthogonal complement.

 $\mathbf{R}' \mathbf{\Lambda} \in \lambda \operatorname{sign}(\mathbf{A}_0) + \lambda \mathbf{F}, \|\mathbf{F}\|_{\infty} \leq 1, \ \mathcal{P}_{\Omega}(\mathbf{F}) = \mathbf{0}_{d \times m}$

C1 : $\mathcal{P}_{\Phi}(\Gamma) = \mathbf{U}\mathbf{V}'$ C2 : $\mathcal{P}_{\Omega}(\mathbf{R}'\Gamma) = \lambda \operatorname{sign}(\mathbf{A}_0)$ C3 : $\|\mathcal{P}_{\Phi^{\perp}}(\mathbf{\Gamma})\| < 1$ C4 : $\|\mathcal{P}_{\Omega^{\perp}}(\mathbf{R}'\mathbf{\Gamma})\|_{\infty} < \lambda$

Analyzing the Dual Certificate minimize $\|\mathbf{X}\|_* + \lambda \|\mathbf{A}\|_1$ s.t. $\mathbf{Y} = \mathbf{X} + \mathbf{R}\mathbf{A}$ \mathbf{X}, \mathbf{A} **Assumption A.1.** $\lambda_{\min} := \frac{1+C}{1-C} \xi$ $\lambda_{\max} \geq \lambda_{\min}$ **Assumption A.2.** $s_{\max} := \frac{(1-\mu)^2}{2} \frac{m}{r}$ $\gamma_{UR} \leq \begin{cases} \frac{(1-\mu)^2 - 2s\gamma_V}{2s(1+\gamma_V)}, & \text{for } s \leq \min(d, s_{\max}) \\ \frac{(1-\mu)^2 - 2s\gamma_V}{2(d+s\gamma_V)}, & \text{for } d < s \leq s_{\max} \end{cases}$

 $C := \frac{c_t}{\mathbf{F}_L (1-\mu)^2 - c_t}$, where $\mathbf{F}_L \le \frac{1}{(1-\mu)^2}$

Definition D.1. $c_t := \frac{\mathbf{F}_U}{2} \left[(1 + 2\gamma_{UR}) (\min(s, d) + s\gamma_V) + 2s\gamma_V \right] - \frac{\mathbf{F}_L}{2} \left[\min(s, d) + s\gamma_V \right]$ **Definition D.2.** $\lambda_{\max} := \frac{1}{\sqrt{s}} \left(\sqrt{\mathbf{F}_L} (1 - \mu) - \sqrt{r \mathbf{F}_U \mu} \right)$

Analyzing the Dual Certificate minimize $\|\mathbf{X}\|_* + \lambda \|\mathbf{A}\|_1$ s.t. $\mathbf{Y} = \mathbf{X} + \mathbf{R}\mathbf{A}$ \mathbf{X}, \mathbf{A} **Assumption A.1. Definition D.1.** Existence of λ $\lambda_{\min} := \frac{1+C}{1-C} \xi$ $C := Characterizes \lambda_{min}^{1}$ **Assumption A.2.** $c_t := \frac{\mathbf{F}_U}{2} [(1 + 2\gamma_{UR})(\min(s, d) + s\gamma_V) + 2s\gamma_V] - \frac{\mathbf{F}_L}{2} [\min(s, d) + s\gamma_V]$ $s_{\max} := \frac{(1-\mu)^2}{2} \frac{m}{r}$ **Definition D.2.** $\lambda_{\max} : Characterizes^{\mu}\lambda_{\max} r \mathbf{F}_{U}\mu$

Main Result (Thin Case)

Theorem 1 - Consider a superposition $\mathbf{Y} = \mathbf{X}_0 + \mathbf{R}\mathbf{A}_0$, of a low-rank matrix $\mathbf{X}_0 \in \mathbb{R}^{n \times m}$ of rank r, and a dictionary sparse component $\mathbf{R}\mathbf{A}_0$, wherein the dictionary $\mathbf{R} \in \mathbb{R}^{n \times d}$ with $d \leq n$ obeys the frame condition with frame bounds $[\mathbf{F}_L, \mathbf{F}_U]$ and the sparse coefficient matrix $\mathbf{A}_0 \in \mathbb{R}^{d \times m}$ has at most s non-zeros, i.e., $\|\mathbf{A}_0\|_0 = s$, with parameters γ_{UR} , ξ , $\gamma_V \in [r/m, 1]$ and $\mu \in [0, 1]$.

Then, if the assumptions A.1. and A.2. hold for any $\lambda \in [\lambda_{\min}, \lambda_{\max}]$, then solving the optimization problem shown in eq.(1) will exactly recover matrices $\mathbf{X}_{\mathbf{0}}$ and $\mathbf{A}_{\mathbf{0}}$.

Main Result

Phase transition in rank and sparsity for $s \leq s_{max}$

Fig.1 - Recovery for varying ranks of X and sparsity of A for the thin case with d = 5. Average recovery across 10 trials, n = m = 100, success (in white) is determined by $\|\mathbf{X} - \hat{\mathbf{X}}\|_F / \|\mathbf{X}\|_F \le 0.02$ and $\|\mathbf{A} - \hat{\mathbf{A}}\|_F / \|\mathbf{A}\|_F \le 0.02$. We use the accelerated proximal gradient algorithm outlined in Mardani, Mateos, and Giannakis, 2013.

$$r \leq \left(\sqrt{\frac{\mathbf{F}_L}{\mathbf{F}_U}} \frac{1-\mu}{\mu} - \frac{\xi}{\sqrt{\mathbf{F}_U}\mu} \frac{1+C}{1-C}\sqrt{s}\right)^2$$

* the parameters are manually tuned.

Simulations

28

Phase transition in rank and sparsity for $s > s_{max}$

X

m = 100, success (in white) is determined by $\|\mathbf{X} - \hat{\mathbf{X}}\|_F / \|\mathbf{X}\|_F \le 0.02$ and $\|\mathbf{A} - \hat{\mathbf{A}}\|_F / \|\mathbf{A}\|_F \le 0.02$. We use the accelerated proximal gradient algorithm outlined in Mardani, Mateos, and Giannakis, 2013.

Fig.1 - Recovery for varying ranks of X and sparsity of A for the thin case with d = 5. Average recovery across 10 trials, n =

A

Simulations

Phase transition in rank and sparsity for $s > s_{max}$

A

We use the accelerated proximal gradient algorithm outlined in Mardani, Mateos, and Giannakis, 2013.

This Work

Deterministic analysis (Location of non-zeros)

Future Work

Randomized analysis (Location of non-zeros)

Fig.2 - Recovery for varying ranks of X and sparsity of A for the thin case with d = 5 for all sparsity levels. Average recovery across 10 trials, n = m = 100, success (in white) is determined by $\|\mathbf{X} - \hat{\mathbf{X}}\|_F / \|\mathbf{X}\|_F \le 0.02$ and $\|\mathbf{A} - \hat{\mathbf{A}}\|_F / \|\mathbf{A}\|_F \le 0.02$.

Simulations

Application Target Identification in Hyper-spectral Imaging

Fig.2 - Identifying the Stone-steel towers in the Indian pines hyper-spectral image data. The video shows the result of demixing of the 50th spectral band into a low rank part and a dictionary sparse part for across the range of λs .

Simulations : Motivating Example

Future Work & Conclusions What's next?

Future Work

Extend the results to higher sparsity levels by assuming a random distribution on the locations of non-zeros of coefficient matrix A.

Analyze the problem for the noisy case Can we hope for support recovery in the presence of noise?

Conclusions

- We analyze a dictionary-based generalization of the robust PCA problem, wherein the known dictionary R can be thin or fat.
- In the thin case, we assume that the dictionary obeys the frame conditions, while in the fat case it obeys RIP of order k.
- We relax some of the constraints required by the prior art, namely provide a unified analysis.
- of phase transitions in rank and sparsity.

orthogonality of rows of R and sparsity of rows of A for the fat case to

• The predicted trend is confirmed by the experimental results in the form

References

- Space", Philosophical Magazine. 2 (11): 559–572.
- analysis?," Journal of the ACM (JACM), vol. 58, no. 3, pp. 11, 2011.
- Optimization, vol. 21, no. 2, pp. 572–596, 2011.
- Advances in Neural Information Processing Systems, 2010, pp. 2496–2504.
- on Information Theory, vol. 59, no. 8, pp. 5186–5205, 2013.

• [Pearson et.al., 1901] K. Pearson "On Lines and Planes of Closest Fit to Systems of Points in

• [Candès et. al., 2009] E. J. Candès, X. Li, Y. Ma, and J. Wright, "Robust principal component"

• [Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2011] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, "Rank-sparsity incoherence for matrix decomposition," SIAM Journal on

• [Xu et. al., 2010] H. Xu, C. Caramanis, and S. Sanghavi, "Robust PCA via outlier pursuit," in

• [Mardani et. al., 2013] M. Mardani, G. Mateos, and G. B. Giannakis, "Recovery of low-rank plus compressed sparse matrices with appli- cation to unveiling traffic anomalies," IEEE Transactions

Clipart/Images References

- Topic modeling image <u>http://bigdata.ices.utexas.edu/project/scalable-topic-modeling/</u>
- Network Traffic Anomaly Image <u>http://www.pdr-team.ch/businesskunden/services/</u>
- Time travel image <u>http://www.slate.com/articles/health_and_science/science/2009/08/</u> <u>timetraveling_for_dummies.html</u>
- Old paper background <u>http://wallpapercave.com/wp/4c8xmGs.jpg</u>
- Subspaces image https://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/
 https://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/
 https://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/
 https://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/
 https://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/

 https://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/

- "The best" clipart https://school.discoveryeducation.com/clipart/clip/certifct.html
- Parameters <u>http://www.free-icons-download.net/images/parameters-icon-64936.png</u>

Thank You! Questions and comments are welcome.

The End