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Abstract

This work examines a semi-blind source separation problem having applications in

audio, image, and video processing. The essential aim is to separate one source whose

local structure is partially or approximately known from another a priori unspecified

but structured source, given only a single linear combination of the two sources. We

propose a novel separation technique based on local sparse approximations. A key

feature of our procedure is the online learning of dictionaries (using only the data

itself) to sparsely model the unknown structured background source. The performance

of the proposed approach is demonstrated via simulation in a stylized application of

audio source separation.
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Chapter 1

Introduction

The blind source separation (BSS) problem entails separating a collection of signals,

each comprised of a superposition of some unknown sources, into their constituent com-

ponents (A canonical example of the BSS task arises in the so-called cocktail party

problem). A number of methods have been proposed to address this problem. Per-

haps the most well-known among these is independent component analysis (ICA) [1],

where the sources are assumed to be independent non-Gaussian random vectors. Other

approaches entail more classical matrix factorization techniques like principal compo-

nent analysis (PCA) [2–4], or, when appropriate for the underlying model, non-negative

matrix factorization (NNMF) [5].

Here we focus on a slightly different, and often more challenging setting – the so-

called single channel source separation problem – where only a single mixture of the

source signals is observed. Single channel source separation problems require the use of

some additional a priori knowledge about the sources and their structure in order to

perform separation [6–9]. Here, we assume that the local structure of one of the source

signals is approximately known, and our aim is to separate this partially known source

from an unknown “background” source.

Our approach is based on local sparse approximations of the mixture data. A novel

feature of our proposed method is in our representation of the unknown background

source – we describe a technique for learning (from the data itself) a model that sparsely

represents the unknown background source, using tools from the dictionary learning

literature (see, eg., [10–12]).
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2

Chapter 2 sets the stage for the problem we consider here more formally, and dis-

cusses the nature of our contributions in the context of existing works in sparse rep-

resentation, dictionary learning, and low-rank modeling. In Chapter 3 we discuss our

algorithm and describe the various facets of its implementation. We then examine the

performance of our proposed approach in an audio source separation problem encoun-

tered in an audio forensics application in Chapter 4. Finally, we discuss conclusions and

possible extensions in Chapter 5.



Chapter 2

Background and Problem

Formulation

As discussed in the previous chapter, our effort here is motivated by a single-channel

semi-blind source separation problem, in which the goal is to separate a nominally

periodic and approximately known signal from unknown but structured background

interference, given only a superposition of the two sources.

Let x ∈ Rn represent our observed data, and suppose that x may be decomposed as

a sum of two unknown sources – one of which (xp ∈ Rn) exhibits local structure that is

partially known, and the other (xu ∈ Rn) is unknown. Our investigation is motivated

by an audio source separation task, where x is comprised of samples of an underlying

continuous time waveform, and we consider xp to be samples of a source that is a

nominally regular repetition of one of a small number of temporally local prototype

signals. One example scenario where this model is applicable is the case where xp is,

except for some unknown offset jitter, periodic. Our aim is to separate the sources xp

and xu from observations of x, which may be noisy or otherwise corrupted.

Our proposed approach is based on the principle of local sparse approximations. In

order to state our overall problem in generality, we describe an equivalent model for our

data x that facilitates the local analysis inherent to our approach. Let us suppose that

m is an integer that divides n evenly, such that n/m = q, an integer. Then x ∈ Rn may

3
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be represented equivalently as a m × q matrix X:

X =Xp +Xu, (2.1)

where Xp is a matrix whose columns are non-overlapping length-m segments of xp, and

similarly for Xu. The goal of our effort is, in essence, to separate X into its constituent

matrices Xp and Xu.

As alluded above, our separation approach entails leveraging local structure in each

of the components of X. Our main contribution comes in the form of a procedure that,

given our “partial” information about the columns of Xp, enables us to learn, in an

online fashion and from the data itself, a dictionary D such that columns of Xu are

accurately expressed as linear combinations of (a small number of) columns of D. In a

broader sense, our work is related to some classical approximation approaches as well

as several recent works on matrix decomposition. We briefly describe these background

and related efforts here, in an effort to put our main contribution in context.

2.1 Prior Art

2.1.1 Low Rank and Robust Low Rank Approximation

Consider the model (2.1) and suppose that the columns of Xp can each be represented

as a linear combination of some r linearly independent vectors, implying that Xp is a

matrix of rank r. Now, different separation techniques may be employed depending on

our assumptions of Xu. Perhaps the simplest case is where Xu is random noise (e.g.,

having entries that are iid zero-mean Gaussian); in this case, the problem amounts to a

denoising problem, which can be solved using ideas from low-rank matrix approximation.

In particular, it is well-known that the approximation X̂p obtained via the truncated

(to rank r) singular value decomposition (SVD) of X is a solution of the optimization

X̂p = arg min
L, rk(L)≤r

∥X −L∥2F , (2.2)

where rk(L) is the function that returns the rank of L.

It is well-known that certain (non-Gaussian) forms of interference Xu may cause

the accuracy of estimators of the low-rank component obtained via truncated SVD to
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degrade significantly. This is the case, for example, when Xu is comprised of sparse large

(in amplitude) impulsive noise. In these cases, the low-rank approximation problem can

be modified to its robust counterpart, which goes by the name of robust PCA in the

literature [13,14]. The robust PCA approach aims to simultaneously estimate both the

low-rank Xp and the sparse Xu, by solving the convex optimization

{X̂p, X̂u} = arg min
L,S

∥L∥∗ + λ∥S∥1 subject to X = L + S, (2.3)

where λ > 0 is a regularization parameter. Here ∥L∥∗ denotes the nuclear norm of L,

which is the sum of the singular values of L. The nuclear norm is a convex relaxation

of the non-convex rank function rk(L). Further, ∥S∥1 is the sum of the absolute entries

of S – essentially the `1 norm of a vectorized version of S, which is a convex relaxation

of the non-convex `0 quasinorm that counts the number of nonzeros of S. Each of these

procedures may be extended, in a natural way, to allow for noise or modeling error.

Here, of course, we explicitly assume that Xu is more highly structured, making the

separation problem more well-suited to a new suite of techniques that explicitly exploit

such structure.

2.1.2 Low Rank Plus Sparse in a Known Dictionary

A useful extension of the robust PCA approach arises in the case where Xu is not itself

sparse, but possesses a sparse representation in some known dictionary or basis. One

example is the case where the background source is locally smooth, implying it can be

sparsely represented using a few low-frequency discrete cosine transform or Fourier basis

elements. Formally, suppose that for some known matrix D, we have that Xu = DAu,

where the columns of Au are sparse. The components of X can be estimated by solving

the following optimization [15]

{X̂p, Âu} = arg min
L,A

∥L∥∗ + λ∥A∥1 subject to X = L +DA (2.4)

Note that an estimate X̂u of Xu may be obtained directly as X̂u =DÂu. This approach

assumes (implicitly) a priori knowledge of a dictionary that sparsely represents the

background signal, which may be a restrictive assumption in practice. Again, extensions

to account for noise or modeling error are straightforward.
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2.1.3 Morphological Component Analysis

A more general model arises when Xp is not low-rank, but instead, its columns are

also sparsely represented in a known dictionary. Suppose that Xp and Xu are sparsely

represented in some known dictionaries D1 and D2, such that Xp = D1A1 and Xu =
D2A2, and that the columns of A1 and A2 are sparse. Such models were employed

in recent work on Morphological Component Analysis (MCA) [16–18], which aimed to

separate a signal into its component sources based on structural differences codified in

the columns of the known dictionaries. The MCA decomposition can be accomplished

by solving the following optimization

{Â1, Â2} = arg min
A1,A2

∥A1∥1 + λ∥A2∥1 subject to X =D1A1 +D2A2, (2.5)

for some λ > 0; the estimates of Xp and Xu may be formed as X̂p = D1Â1 and X̂u =
D2Â2, respectively. When Xp and Xu are each comprised of a single column, this

optimization is equivalent to the so-called Basis Pursuit technique [19], which formed

a foundation of much of the recent work in sparse approximation. Note that, as with

the previously mentioned approach, this approach also assumes a priori knowledge of a

dictionary that sparsely represents the background. Again, extensions to the noisy case

are straightforward.

2.2 Our Contribution: “Semi-blind” Morphological Com-

ponent Analysis

Our focus here is similar to the MCA approach above, but we assume only one of the

dictionaries, say D1, is known. In this case, the MCA approach transforms into a semi-

blind separation problem where we try to also learn a dictionary D2 to represent the

unknown signal. Our main contribution comes in the form of a “Semi-Blind” MCA

procedure, designed to solve the following modified form of the MCA decomposition

{Â1, Â2, D̂2} = arg min
A1,A2,D2

∥X −D1A1 −D2A2∥2F + λ̃1∥A1∥1 + λ̃2∥A2∥1, (2.6)

for λ̃1, λ̃2 > 0, and this problem forms the basis of the remainder of this thesis. Specif-

ically, in Chapter 3 we propose a procedure, based on alternating minimization, for

obtaining local solutions to optimizations of the form (2.6).



Chapter 3

Semi-Blind Morphological

Component Analysis (SBMCA)

As described in Section 2.2 of Chapter 2, our model assumes that the data matrix X

can be expressed as the superposition of two component matrices, Xp and Xu. Further,

we assume that each of the component matrices possesses a sparse representation in

some dictionary, such that Xp ≈ D1A1 and Xu ≈ D2A2, where D1 is known a priori.

Our essential aim, then, is to identify an estimate Â1 of the coefficient matrix A1

and estimates D̂2 and Â2 of the matrices D2 and A2. Our estimates of the separated

components are then given by X̂p =D1Â1, and X̂u = D̂2Â2.

We propose an approach to solve (2.6) that is based on alternating minimization, and

is summarized here as Algorithm 1. We note that the lack of joint convexity makes the

SBMCA algorithm sensitive to initialization. Therefore, any suitable initialization using

sparse approximation techniques, depending upon the problem setting, can be employed.

Let λ1, λ2, λ3 > 0 be user specified regularization parameters. Our initial estimate of

coefficients A1, corresponding to the coefficients of Xp in the known dictionary D1, is

obtained via

Ã1 = arg min
A1

∥X −D1A1∥2F + λ1∥A1∥1, (3.1)

which is a simple LASSO-type problem. We then proceed in an iterative fashion, as out-

lined in the following sections, for a few iterations or until some appropriate convergence

criteria is satisfied.

7
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Algorithm 1: Semi-Blind MCA Algorithm

Input: Original Data X ∈ Rm×q, Known Dictionary D1 ∈ Rm×d,

Regularization parameters λ1, λ2, λ3 > 0,

Number of elements in unknown dictionary `.

Initialize: Ã1 ← arg min
A1

∥X −D1A1∥2F + λ1∥A1∥1

(or other suitable initialization depending on the problem.)

Iterate (repeat until convergence):

repeat

Dictionary Learning:

{D̃2, Ã2} ← arg min
D2,A2

∥X −D1Ã1 −D2A2∥2F + λ2∥A2∥1

Coefficient Update:

D̃ = [D1 D̃2]
[ÃT

1 ÃT
2 ]T ≜ Ã← arg min

A
∥X − D̃A∥2F + λ3∥A∥1

until convergence

Output: Learned dictionary D̂2 ← D̃2,

Coefficient estimates Â1 = Ã1, Â2 = Ã2.

3.1 Dictionary Learning Stage

Given the estimate Ã1, we can essentially “subtract” the current estimate of Xp from

X, and apply a dictionary learning step to identify estimates of the unknown dictionary

D2 and the corresponding coefficients A2. In other words, we solve

{D̃2, Ã2} = arg min
D2,A2

∥X −D1Ã1 −D2A2∥2F + λ2∥A2∥1. (3.2)

Now, given the estimate D̃2, we update our current estimate of the overall dictionary

D̃ = [D1 D̃2]. We then update the overall coefficient matrix by solving another sparse

approximation problem, as described next.
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3.2 Sparse Approximation Stage

Given our current estimate of the overall dictionary, we update the corresponding coef-

ficient matrices by solving the following LASSO-like problem:

[ÃT
1 ÃT

2 ]T ≜ Ã = arg min
A

∥X − D̃A∥2F + λ3∥A∥1. (3.3)

Now, we extract the submatrix Ã1 from Ã, and repeat, beginning again with the

dictionary learning step. These steps are iterated for a fixed number of iterations, or

until some appropriate convergence criteria is satisfied, such as, when the difference

between successive estimates of the quantities of interest are sufficiently small.

3.3 Initialization of SBMCA

As with any optimization problem of this nature (when the objective function is not

jointly convex) initialization may play an instrumental role in ensuring the success of

the procedure. Likewise, for the SBMCA approach, the lack of joint convexity makes

the algorithm somewhat sensitive to the initialization. This can be observed from the

dictionary learning step in Algorithm 1, where the elements of dictionary D2 depend on

how efficiently the source one was extracted initially. Failure to initialize the algorithm

properly may lead to interference of the sources and deteriorate the performance of the

algorithm. To this effect, the initialization step in Algorithm 1 can be modified to any

desirable initialization, such as OMP (Orthogonal Matching Pursuit) [20] formulation

or Lasso, as the case may be.

3.4 A Note on Debiasing

Sparse approximation techniques such as Lasso, which employ l1 norm, the convex

relaxation of l0 norm, are prone to “shrinkage” of coefficients. To reverse this effect,

a debiasing step, which essentially is a least-square fit on the essential support (non-

zero elements) of the coefficient matrix A, can be employed after every Lasso step

or at the end of the SBMCA algorithm. However, there is a catch in terms of the

sparsity basis learnt for the unknown background signal xu. We note that debiasing
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step involves choosing a single threshold to select the “essential” dictionary elements,

because the relative sparsity of the representation of signals xp and xu in dictionaries D1

and D2 respectively, may vary (the magnitude of the coefficients in these dictionaries

have different distribution), a chosen threshold for debiasing may be detrimental for

one or both of the signals. Nevertheless, debiasing may be employed effectively, in cases

where dictionaries D1 and D2 provide similar sparse representations for signals xp and

xu, respectively, depending upon the problem setting

3.5 SBMCA vs MCA : Is there a difference?

At first glance the only difference between SBMCA and MCA appears to be the unknown

dictionary D2, in place of a known standard basis or dictionary. This sums up the

algorithmic difference between the procedures, though a deeper difference lies in the

interpretation of the problem.

Although a standard complete basis can always represent any signal, the sparsity of

the corresponding representation is not ensured. For example, arbitrary waveforms such

as speech can be represented by any orthonormal complete basis (the identity basis or the

DCT basis, for example). Although speech is inherently bandlimited, its representation

in DCT basis may not be overly sparse, due to occasional sharp transitions having wide-

band frequency content. However, by using our online Dictionary Learning approaches,

our aim is to learn frequently occuring patterns and to develop a data-dependent sparse

representation. Further, the primary aim of using the dictionary learning procedure in

SBMCA is to separate the sources, in the process we obtain the sparse basis for the

unknown signal (an added bonus!).

Making an educated guess about the sparsity basis of a signal may not be possible

in all the cases. In addition, as we will see in Chapter 4, the choice of basis effects the

separation results. To this effect, an “online” methodology which does not require any

knowledge about the unknown signal is attractive.



Chapter 4

Evaluation: An Application in

Audio Forensics

We consider an audio source separation motivated by an application in audio forensics.

Specifically, we examine a stylized version of a problem that arises during altercations

where electroshock law enforcement devices are utilized.

For the sake of this example, we suppose that the electroshock devices discharge ap-

proximately 36 times per second, and that the waveforms generated by the device during

the discharge may take one of two different forms depending on the level of resistive load

encountered by the device. We suppose that we are able to obtain an audio recording

of the altercation, which is comprised of audio corresponding to the nominally periodic

discharge of the device, superimposed with background noise (eg., speech and/or other

noises). Our aim is to separate the superposition into its components, with the ultimate

goal of being able to determine whether the device encountered a highly resistive load

or not (which correlates with whether the device is delivering current to the suspect, or

not).

Figure 4.1 shows a segment of the signals used in our simulation. We simulate

the form of the approximately periodic signals (xp), shown in Figure 4.1 (a), using

two distinct exponentially decaying sinusoids (obtained using series RLC circuits with

different parameters) to model the loaded and open circuit states. We generate two

distinct waveforms, which correspond to the two states (high and low resistive load),

11
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and form the overall signal xp by concatenating randomly-selected versions of these

prototype signals, each of which is subject to a few samples of timing offset in order

to model the non-idealities of the actual electroshock device. A speech signal1 shown

in Figure 4.1 (b), was used to model background noise that may be present during the

altercation. We simulate the overall raw audio data, x as a linear combination of xp,

xu and zero-mean random Gaussian noise vector whose entries are iid N (0, σ2).
Figure 4.1 (c) depicts the signals of interest, along with their mixture, in the ideal

case σ = 0. The data matrix X is formed from the signal x as discussed in Chapter 2

using non-overlapping segments with 400 samples each.
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Figure 4.1: A segment of mixture components (noise free): (a) the nominally periodic

signal xp (each segment is the discharge corresponding to one of the two resistive load

states, randomly selected and with random timing offsets); (b) the background signal

xu; (c) the mixture x.

1 Speech Samples obtained from VoxForge Speech Corpus: www.voxforge.org/home
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We now attempt to solve the source separation problem discussed above, by perform-

ing separation in both the frequency domain and the time domain, in Section 4.1 and

Section 4.2 respectively. Further we analyze the performance of the SBMCA algorithm

and compare it to the performance of MCA algorithm under different noise levels.

4.1 Source Separation in the Frequency Domain

Observing the signals shown in Figure 4.1, it is natural to first look at the possible

separation in the frequency domain via SBMCA and MCA techniques. The frequency

domain treatment may also help us to address the timing uncertainty in nominally peri-

odic nature of xp as the magnitude spectra of the constituent prototype signals remain

invariant under time shifts. Therefore, D1 now consists of two elements corresponding

to magnitude spectra of the two prototype signals.

We can now proceed to perform the morphological separation of the magnitude

spectra of each column of the data matrix X. Owing to the conjugate symmetry of

the magnitude spectra, we perform the analysis on the first (m2 + 1) elements of each

column of X. The morphological separation by SBMCA, where the unknown dictionary

D2 is learnt, MCA with D2 as the DCT basis elements (MCA-DCT-Fourier) of size

(m2 + 1) × (m2 + 1) and MCA with D2 as the Identity basis elements (MCA-Identity-

Fourier) of size (m2 +1)×(m2 +1) is then carried out to complete the analysis. The initial

Table 4.1: Analysis of reconstruction SNR(in dB): Frequency Domain Separation

Noise N (0, σ2) σ = 0 σ = 0.001 σ = 0.01 σ = 0.1

Method/Signal xp xu xp xu xp xu xp xu

SBMCA 10.56 16.08 10.56 16.07 10.52 16.10 8.25 12.51

MCA-DCT-

Fourier
5.74 12.42 5.74 12.42 5.71 12.41 4.72 10.29

MCA-Identity-

Fourier
10.05 15.32 10.05 15.32 9.99 15.30 6.83 12.71

estimate of the coefficient matrix A1 for the SBMCA algorithm is formed by a OMP

step based on the extracted nominally periodic signal xp using the MCA-Identity-Fourier
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algorithm.

For the reconstruction of the signals xp and xu, we employ Wiener Filtering. We

use the estimated magnitude spectra (after ensuring the positivity of extracted spectra

and appropriate extension to form the full magnitude spectra) to estimate the corre-

sponding power spectral densities of the two components to form our final estimates.

The best reconstruction SNR(in dB) of extracted signals xp and xu at noise levels of

σ = 0, 0.001, 0.01, 0.1 is shown in Table 4.1. The best achievable SNRs (in dB) for

MCA methods (MCA-DCT-Fourier and MCA-Identity-Fourier) are found by finding

best parameters for xp and xu separately i.e. these SNR (in dB) levels may not be

jointly achieved. In case of SBMCA we clairvoyantly tune the parameters (together)

and the SNR (in dB) values are jointly achievable. It can be observed that SBMCA

performs better than MCA-DCT-Fourier and MCA-Identity-Fourier, in terms of SNR

(in dB), across various noise levels both on the nominally periodic signal, xp and the

unknown background noise, xu, with an exception for the unknown background sig-

nal at σ = 0.1, where MCA-Identity-Fourier performs better than the other methods.

Table 4.2 shows values of parameters (number of elements l in the dictionary D2, the

regularization parameter for the dictionary learning step λ2 and coefficient update step

λ3) used for the SBMCA algorithm.

Table 4.2: SBMCA Algorithm Parameters for the Frequency Domain Source Separation

Parameters Values

Noise N (0, σ2) Number of elements l in D2 λ2 λ3

σ = 0 110 0.03 0.01

σ = 0.001 110 0.03 0.01

σ = 0.01 110 0.03 0.01

σ = 0.1 60 0.05 0.1

Figure 4.2, 4.3 and 4.4 show the results of source separation in the frequency domain

obtained via SBMCA, MCA-DCT-Fourier and MCA-Identity-Fourier respectively at

σ = 0. In each of these figures, (a) depicts the original mixture, (b) the extracted

speech signal (unknown) and (c) the extracted nominally periodic signal. Specifically,

Figure 4.5 and 4.6 provide insights about source separation performance over a short
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Figure 4.2: Frequency Domain Source Separation using SBMCA. (a) A segment of

original mixture, (b) extracted speech signal and (c) extracted nominally periodic signal.
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Figure 4.3: Frequency Domain Source Separation using MCA-DCT-Fourier. (a) A

segment of original mixture, (b) extracted speech signal and (c) extracted nominally

periodic signal.
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Figure 4.4: Frequency Domain Source Separation using MCA-Identity-Fourier. (a) A

segment of original mixture, (b) extracted speech signal and (c) extracted nominally

periodic signal.
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Figure 4.5: A segment of extracted nominally periodic signal xp (Frequency Domain

Separation). (a) The original nominally periodic signal, (b) and (d) The extracted

nominally periodic signal via SBMCA and MCA-Identity-Fourier respectively, (c) and(e)

The absolute error between the extracted and original nominally periodic signal via

SBMCA and MCA-Identity-Fourier respectively.
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Figure 4.6: A segment of extracted speech signal xu (Frequency Domain Separation).

(a) The original speech signal, (b) and (d) The extracted speech signal via SBMCA and

MCA-Identity-Fourier respectively, (c) and(e) The absolute error between the extracted

and original speech signal via SBMCA and MCA-Identity-Fourier respectively.
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period of time obtained via SBMCA and MCA-Identity-Fourier algorithms at σ = 0.

Figure 4.5 shows extracted nominally periodic signal xp, (a) depicts a segment of the

original nominally periodic signal xp, (b) and (d) show the separation achieved via

SBMCA and MCA-Identity-Fourier (two best performing methods in terms of SNR(in

dB)), respectively, (c) and (e) show the correponding absolute errors via SBMCA and

MCA-Identity-Fourier. Similarly, Figure 4.6 shows extracted speech signal xu, (a) shows

a segment of the original speech signal xu, (b) and (d) show the separation achieved

via SBMCA and MCA-Identity-Fourier, respectively, (c) and (e) show the correponding

absolute errors via SBMCA and MCA-Identity-Fourier. Comparing panels (c) and (e)

in Figure 4.5 and Figure 4.6 , we note that MCA-Identity-Fourier algorithm yields a

little higher levels of errors as compared to the SBMCA, this is also evident from the

corresponding SNR performance as shown in Table 4.1.

Another interesting metric to measure the performance of these algorithms is the the

histogram of normalized errors-per-block shown in Figures 4.7-4.10, measured using the

vector l2 norm, for each method at noise levels of σ = 0, 0.001, 0.01, 0.1, respectively. In

each of these figures panels (a), (c) and (e) represent the histogram of normalized error-

per-block for xp and (b), (d) and (f) represent the histogram of normalized error-per-

block for xu via SBMCA, MCA-DCT-Fourier and MCA-Identity-Fourier respectively,

with σ = 0 in Figure 4.7, σ = 0.001 in Figure 4.8, σ = 0.01 in Figure 4.9 and σ = 0.1

in Figure 4.10. We observe that both SBMCA and MCA-Identity-Fourier perform

somewhat comparably. However, dip in the performance of MCA-DCT-Fourier can be

attributed to the presence of a large number of blocks towards the high-error parts of

the histogram.

By the analysis presented above we conclude that, although the frequency domain

treatment allows us to tackle the timing uncertainty associated with the nominally

periodic signal xp, the phase ambiguity created due to lack of phase information in the

separation stage, proves detrimental to the overall source separation performance.
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Figure 4.7: Histogram of normalized error-per-block of extracted nominally periodic

signal xp and extracted speech signal xu with noise σ = 0 for frequency domain source

separation using Semi-blind MCA, MCA-DCT-Fourier and MCA-Identity-Fourier for

the audio forensic application.
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Figure 4.8: Histogram of normalized error-per-block of extracted nominally periodic

signal xp and extracted speech signal xu with noise σ = 0.001 for frequency domain source

separation using Semi-blind MCA, MCA-DCT-Fourier and MCA-Identity-Fourier for

the audio forensic application.
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Figure 4.9: Histogram of normalized error-per-block of extracted nominally periodic

signal xp and extracted speech signal xu with noise σ = 0.01 for frequency domain source

separation using Semi-blind MCA, MCA-DCT-Fourier and MCA-Identity-Fourier for

the audio forensic application.
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Figure 4.10: Histogram of normalized error-per-block of extracted nominally periodic

signal xp and extracted speech signal xu with noise σ = 0.1 for frequency domain source

separation using Semi-blind MCA, MCA-DCT-Fourier and MCA-Identity-Fourier for

the audio forensic application.
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4.2 Source Separation in the Time Domain

Next we consider the source separation in time domain which was the topic of discussion

in the publication associated with this thesis [21]. In case of time domain separation, we

form the dictionary D1 by incorporating certain circular shifts of the nominal prototype

pulses from which xp was generated. We then employ the semi-blind MCA approach

discussed in Chapter 3 to separate the background audio from the nominally known

periodic portion.

We compare the performance of our approach with two versions of MCA, one using

the DCT basis and the other using the identity basis to form the dictionary D2. We

use the estimated xp, obtained via MCA-DCT procedure to initialize our approach by

applying one step of orthogonal matching pursuit (OMP) [20] on the estimate of xp

obtained via MCA-DCT to form the initial (one component per column) estimate A1

for the SBMCA algorithm.

Table 4.3: Analysis of reconstruction SNR(in dB): Time Domain Separation

Noise N (0, σ2) σ = 0 σ = 0.001 σ = 0.01 σ = 0.1

Method/Signal xp xu xp xu xp xu xp xu

SBMCA 23.72 29.32 23.73 29.32 23.08 27.40 19.72 16.84

MCA-DCT 20.44 26.02 20.46 26.02 20.19 24.96 18.09 16.72

MCA-Identity 10.90 16.06 10.90 16.44 10.90 16.33 10.78 11.44

Table 4.3 lists the best achievable reconstruction SNRs (in dB) of each method. We

note that our interest here is in comparing the best performances achieved by MCA

and our proposed method, so we clairvoyantly tune the value(s) of the regularization

parameter to give the lowest error for each task. Table 4.4 shows values of parameters

(number of elements l in the dictionary D2, the regularization parameter for the dictio-

nary learning step λ2 and coefficient update step λ3) used for the SBMCA algorithm.

(In general, a different regularization parameter may have been utilized to obtain the

reconstruction SNRs of each signal component, even for the same method and same

noise level – in other words, the SNRs listed may not be jointly achievable from a single

implementation of any of the stated procedures).
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Table 4.4: SBMCA Algorithm Parameters for Time Domain Source Separation

Parameters Values

Noise N (0, σ2) Number of elements l in D2 λ2 λ3

σ = 0 1000 0.1 0.001

σ = 0.001 1000 0.1 0.001

σ = 0.01 900 0.2 0.01

σ = 0.1 110 0.1 0.1

Figure 4.11, 4.12 and 4.13 show the source separation results obtained via SBMCA,

MCA-DCT and MCA-Identity respectively at σ = 0. In each of these figures, (a) depicts

the original mixture, (b) the extracted speech signal (unknown) and (c) the extracted

nominally periodic signal. Specifically, Figure 4.14 and 4.15 provide insights about the

time domain source separation performance over a short period of time obtained via

SBMCA and MCA-DCT (two best performing methods in terms of SNR (in dB))at

σ = 0. Figure 4.14 shows extracted nominally periodic signal xp, (a) depicts a segment

of the original nominally periodic signal xp, (b) and (d) show the separation achieved

via SBMCA and MCA-DCT, respectively, (c) and (e) show the correponding absolute

errors obtained via SBMCA and MCA-DCT. Similarly, Figure 4.15 shows extracted

speech signal xu, (a) shows a segment of the original speech signal xu, (b) and (d) show

the separation achieved via SBMCA and MCA-DCT, respectively, (c) and (e) show the

correponding absolute errors via SBMCA and MCA-DCT. Comparing panels (c) and

(e) in Figure 4.14 and Figure 4.15 , we note that the SBMCA algorithm yields lower

errors as compared to the MCA-DCT algorithm; this feature is also highlighted in the

histogram of error-per-block results discussed next.

A second, perhaps more interesting, performance comparison is shown Figures 4.16-

4.19, which depicts the histogram of normalized errors-per-block, measured using the

vector l2 norm, for each method. In each of these figures panels (a), (c) and (e) represent

the histogram of normalized error-per-block for xp and (b), (d) and (f) represent the

histogram of normalized error-per-block for xu via SBMCA, MCA-DCT and MCA-

Identity respectively, with σ = 0 in Figure 4.16, σ = 0.001 in Figure 4.17, σ = 0.01 in

Figure 4.18 and σ = 0.1 in Figure 4.19. We observe from the distribution of l2 errors
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Figure 4.11: Time Domain Source Separation using SBMCA. (a) A segment of original

mixture, (b) extracted speech signal and (c) extracted nominally periodic signal.
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Figure 4.12: Time Domain Source Separation using MCA-DCT. (a) A segment of orig-

inal mixture, (b) extracted speech signal and (c) extracted nominally periodic signal.
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Figure 4.13: Time Domain Source Separation using MCA-Identity. (a) A segment of

original mixture, (b) extracted speech signal and (c) extracted nominally periodic signal.
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Figure 4.14: A segment of extracted nominally periodic signal xp (Time Domain Sepa-

ration). (a) The original nominally periodic signal, (b) and (d) The extracted nominally

periodic signal via SBMCA and MCA-DCT respectively, (c) and(e) The absolute error

between the extracted and original nominally periodic signal via SBMCA and MCA-

DCT respectively.
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Figure 4.15: A segment of extracted speech signal xu (Time Domain Separation). (a)

The original speech signal, (b) and (d) The extracted speech signal via SBMCA and

MCA-DCT respectively, (c) and(e) The absolute error between the extracted and orig-

inal speech signal via SBMCA and MCA-DCT respectively.
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Figure 4.16: Histogram of normalized error-per-block measured using the vector l2 norm

of extracted nominally periodic signal xp and extracted speech signal xu with zero mean

gaussian noise σ = 0 for time domain separation using Semi-blind MCA and MCA with

DCT and Identity basis for the audio forensic application.



33

σ = 0.001

xp xu

SBMCA

0 5 10 15

x 10
−3

0

200

400

600

800

1000

Normalized Error per Block

N
u
m

b
e
r 

o
f 
B

lo
c
k
s

0 5 10 15

x 10
−3

0

200

400

600

800

1000

Normalized Error per Block

N
u
m

b
e
r 

o
f 
B

lo
c
k
s

(a) (b)

MCA-DCT

0 5 10 15

x 10
−3

0

200

400

600

800

1000

Normalized Error per Block

N
u
m

b
e
r 

o
f 
B

lo
c
k
s

0 5 10 15

x 10
−3

0

200

400

600

800

1000

Normalized Error per Block

N
u
m

b
e
r 

o
f 
B

lo
c
k
s

(c) (d)

MCA-Identity

0 5 10 15

x 10
−3

0

200

400

600

800

1000

Normalized Error per Block

N
u
m

b
e
r 

o
f 
B

lo
c
k
s

0 5 10 15

x 10
−3

0

200

400

600

800

1000

Normalized Error per Block

N
u
m

b
e
r 

o
f 
B

lo
c
k
s

(e) (f)

Figure 4.17: Histogram of normalized error-per-block measured using the vector l2 norm

of extracted nominally periodic signal xp and extracted speech signal xu with zero mean

gaussian noise σ = 0.001 for time domain separation using Semi-blind MCA and MCA

with DCT and Identity basis for the audio forensic application.
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Figure 4.18: Histogram of normalized error-per-block measured using the vector l2 norm

of extracted nominally periodic signal xp and extracted speech signal xu with zero mean

gaussian noise σ = 0.01 for time domain separation using Semi-blind MCA and MCA

with DCT and Identity basis for the audio forensic application.
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Figure 4.19: Histogram of normalized error-per-block measured using the vector l2 norm

of extracted nominally periodic signal xp and extracted speech signal xu with zero mean

gaussian noise σ = 0.1 for time domain separation using Semi-blind MCA and MCA with

DCT and Identity basis for the audio forensic application.
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across blocks, that the SBMCA procedure (Figure 4.16- 4.19 (a) and (b)) results in

larger number of blocks with lower errors as compared to the MCA-DCT (Figure 4.16-

4.19 (c) and (d)) and MCA-Identity (Figure 4.16- 4.19 (e) and (f)). This feature is of

primary importance in the audio forensics application where classifying each period of

the nominally periodic signal xp, as one of the two prototype signals, is of interest.

From the analysis of MCA-DCT and MCA-Identity results, we observe that the

separation results are depend on the choice of the basis employed. This sheds light onto

yet another advantage of employing the SBMCA procedure i.e. a priori knowledge

about the sparse basis of the unknown signal (xu) is not required for source separation.

It is important to note that the performance of the source separation via SBMCA

rests heavily on the local structure of the unknown signal xu. This scenario is analogous

to any online Dictionary Learning based denoising problem. The effect of presence of

structure is evident at higher levels of noise (σ = 0.1), where sparsity of the signal plays

an important role in rejecting noise.



Chapter 5

Conclusion and Discussion

We proposed a semi-blind source separation technique based on local sparse approxima-

tions. Our approach exploits partial prior knowledge of one of the sources, in the form

of a dictionary which sparsely represents local segments of one of the sources. A key

feature of our approach is the online learning of a dictionary (from the mixed source

data itself) for representing the unknown background source. We posed the overall

problem as an optimization problem and proposed a solution approach based on alter-

nating minimization, and we verified its effectiveness via simulation in a stylized audio

separation application.

We note that the timing uncertainty inherent in our application suggests that our

approach may be combined with other existing alignment techniques. The task of

aligning batches of images is well-studied in the computer vision literature. For example,

techniques that aim to exploit the low-rankness of (properly aligned) images have been

proposed in [22], [23], [24], and more recently [25] proposed a robust alignment procedure

that can be viewed as an extension of robust PCA to the case where columns of the

nominally low-rank component are each subjected to some (unknown) misalignment

operation (translation, rotation) that must be learned from the data. Here, by contrast,

we tolerate the unknown (one-dimensional) misalignment in a straight-forward manner,

by either replicating columns of our known dictionary at a number of shifts (in the time

domain analysis) or considering separation of frequency amplitude spectra (where the

resulting spectra are invariant to the unknown timing offset – a phase shift). It would be

interesting to see whether the robust alignment techniques of [25] may be extended to
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our setting where the background signal (or corruption) is sparse in a perhaps unknown

dictionary that is learned from the data itself. We defer these extensions, as well as the

investigation of our approach to other applications (e.g., in image or video processing)

to future efforts.
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Appendix A

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of jargon and acronyms, but

this cannot always be achieved. This appendix defines jargon terms in a glossary, and

contains a table of acronyms and their meaning.

A.1 Glossary

• Source Separation – a classical signal processing problem entailing separation

of constituent sources from one( referred to as Single Channel) or several( referred

to as Multiple Channel) mixtures of individual sources.

• Cocktail party problem – the source separation problem, illustrated by an

example of a cocktail party, where multiple speakers are simultaneously speaking

and the aim is to separately comprehend each speaker.

• Sparsity – a property of a signal to achieve compact representation in some basis.
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A.2 Acronyms

Table A.1: Acronyms

Acronym Meaning

BSS Blind Source Separation

DCT Discrete Cosine Transform

ICA Independent Component Analysis

LASSO Least Absolute Shrinkage and Selection Operator

MCA Morphological Component Analysis

NNMF Non-Negative Matrix Factorization

OMP Orthogonal Matching Pursuit

PCA Principal Component Analysis

RLC Resistance-Inductance-Capacitance

RPCA Robust Principal Component Analysis

SBMCA Semi-Blind Morphological Component Analysis

SVD Singular Value Decomposition
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