Machine Learning

CSCI 567, Spring 2021

Sirisha Rambhatla


General Information  |  Schedule & Readings  |  Homework & Quizzes |  Other Resources

*Schedule is subject to small adjustments. Slides will be posted before each lecture (and might be updated slightly soon after the lecture).

Date Topics Recommended Reading
01/15 Overview and introduction to Machine Learning; Review of the foundational concepts from Probability, Optimization, and Information Theory slides
01/20 Nearest Neighbor Classification and its theoretical foundations slides [MLaPP] 1.4.2
01/22 Linear Regression slides [MLaPP] 1.4.5, 7.1-7.3, 7.5.1, 7.5.2, 7.5.4, 7.6, 1.4.7, 1.4.8
[ESL] 7.1, 7.2, 7.3, 7.10
01/27 Linear Regression with non-linear basis and overfitting slides [MLaPP] 7.1-7.3, 7.5.1, 7.5.2, 7.5.4, 7.6
01/29 Linear Classifiers and Surrogate Losses and Perceptrons slides [MLaPP] 8.5.1-8.5.4, 1.4.6, 8.1-8.3
[ESL] 4.1-4.2, 4.4
02/03 Logistic Regression slides[MLaPP] 4.2.1 - 4.2.5, 1.4.6
02/05 Multi-class Classification slides
02/10 Linear Discriminant Analysis (LDA) slides [ESL] 4.3
02/12 Neural Networks slides [MLaPP] 16.5.1-16.5.6, [ESL] 11.3-11.7
02/17 Convolutional Neural Networks slides [MLaPP] 16.5.1-16.5.6, [ESL] 11.3-11.7
02/19 Kernel Methods slides [MLaPP] 14.1, 14.2.1-14.2.4, 14.4.1, 14.4.3
[ESL] 5.8, 6.3, 6.7
02/24 SVM I: SVM and its Primal Formulation slides [MLaPP] 14.5.2-14.5.4
[ESL] 12.1-12.3
02/26 SVM II: Lagrangian Duality and SVM's Dual Formulation slides[MLaPP] 14.5.2-14.5.4
[ESL] 12.1-12.3
03/03 Quiz I
03/05 Decision Trees slides[MLaPP] 16.2
[ESL] 16.3
03/10 Ensemble Methods: Boosting slides[MLaPP] 16.4.1-16.4.5, 16.4.8, 16.4.9
03/12 Wellness Day (No Class)
03/17 Clustering: K-means slides[MLaPP] 3.5, 11.1-11.3, 11.4.1-11.4.4, 11.5
[ESL] 6.6.3, 8.5, 14.3.1-14.3.9
03/19 Gaussian Mixture Models slides [MLaPP] 3.5, 11.1-11.3, 11.4.1-11.4.4, 11.5
[ESL] 6.6.3, 8.5, 14.3.1-14.3.9
03/24 Density Estimation slides [MLaPP]
03/26 Naive Bayes slides [MLaPP] 10.1, 10.2.1-10.2.3, 10.3-10.5
03/31 Dimensionality Reduction and PCA slides [MLaPP] 12.2, [ESL] 14.5.1
04/02 Hidden Markov Models - I slides
[MLaPP] 17.1-17.4, 17.5.1-17.5.2
04/07 Wellness Day (No Class)
04/09 Hidden Markov Models - II slides
[MLaPP] 17.1-17.4, 17.5.1-17.5.2
04/14 Multi-arm Bandit Models slides
04/16 Reinforcement Learning slides
04/21 Contemporary Topics in Machine Learning, Sequential Models and Autoencoders: Guest Lecture by Nitin Kamra Ph.D. Candidate, CS Dept., USC slides
04/23 Algorithmic Fairness and the Law: Guest Lecture by Alice Xiang (Sony AI Research) slides
04/28 Last Class: Summary and Project Logistics slides
04/30 Wellness Day (No Class)
05/03 Project Due
05/10 8:00 - 10:00 AM PST Quiz 2 (Final)